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Abstract

We present a new approach for graph based
semi-supervised learning based on a multi-
component extension to the Gaussian MRF
model. This approach models the observa-
tions on the vertices as jointly Gaussian with
an inverse covariance matrix that is a weight-
ed linear combination of multiple matrices.
Building on randomized matrix trace estima-
tion and fast Laplacian solvers, we develop
fast and efficient algorithms for computing
the best-fit (maximum likelihood) model and
the predicted labels using gradient descen-
t. Our model is considerably simpler, with
just tens of parameters, and a single hyper-
parameter, in contrast with state-of-the-art
approaches using deep learning techniques.
Our experiments on benchmark citation net-
works show that the best-fit model estimated
by our algorithm leads to significant improve-
ments on all datasets compared to baseline
models. Further, our performance compares
favorably with several state-of-the-art meth-
ods on these datasets, and is comparable with
the best performances.

1 Introduction

In many learning scenarios, we have access to a large
number of instances, relatively few of which are la-
beled. This situation is common, for instance, in image
search, genomics, natural language processing, and
speech recognition. Semi-supervised learning (SSL)
seeks to leverage the unlabeled instances for improved
learning performance.

Graph based SSL is an influential approach that was
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proposed in the work of Zhu, Ghahramani, Lafferty [1],
and Zhou et al. [2]. It exploits a similarity function
between the instances that exists naturally, or can be
derived, allowing both labeled and unlabeled instances
to be placed as vertices in a graph whose edges denote
similarity. This approach, as proposed in [1], model-
s the labels on the vertices according to a Gaussian
Markov random field (MRF) model specified by the
graph (see Section 2). Predicted labels, for all the un-
labeled vertices in the graph, are computed using the
Maximum Likelihood estimate (MLE) for the vertex
labels, which can be estimated by solving a system of
linear equations in the graph Laplacian. Or equivalent-
ly, one can view the label information as propagating
through the edges of the graph [2], allowing one set
of unlabeled instances to contribute to the inferred
labels of another set. If the similarity functions are
of high quality, the learning performance can often
be improved by such techniques. In particular, if the
underlying data exhibits a natural graph structure (e.g.
social network, citation network) it is likely suited for
label propagation.

In the last couple of years, there has been a surge of
methods with the objective of repeating the success
of techniques from neural networks to graph based
SSL. These include learned graph embeddings (Plane-
toid) [3], graph convolution networks (GCN) [4], atten-
tion mechanisms in graphs (GAT) [5], (AGNN) [6] and
GANs [7, 8]. These neural network-based models per-
form very well on benchmark datasets; GCN and GAT
in particular beat all approaches based on the Gaussian
random field assumption, including ours. However, the
margin is modest, and models such as ours have several
offsetting advantages, suggesting that high-performing
techniques of both flavors are important:

1. Our model is considerably simpler, with just tens
of parameters, in contrast with several thousand
parameters in some of the DNN-based approach-
es. In the case of very limited supervision, such
parsimonious models are desirable.

2. Specifically, models with a large number of param-
eters, and recurrence / attention mechanisms can

1Equal contribution
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be hard to train, and require handpicked architec-
tural choices (see [5] for a fascinating description
of the amount of complex tuning required to at-
tain top performance). In contrast, our approach
requires just a single hyperparameter, and no hand
tuning of the network architectures to obtain opti-
mal performance in all the experiments we show.

3. Given the small optimization space and our algo-
rithms, the end to end training is very efficient
in comparison, especially when accounting for the
necessary hyperparameter optimization.

4. Finally, the simplicity and linear structure of our
model allows for easy interpretability, both for the
importance of the various components of the Lapla-
cian (see below), and to trace how the predicted
label at each vertex is influenced by its neighbors,
and in fact, by each of the original labeled ex-
amples. As interpretability of models becomes
increasingly important in many user-facing situa-
tions, this property of our approach is a significant
advantage.

1.1 Our Contributions

In this paper, we propose an approach to extract con-
siderably more power from the Gaussian MRF model.
We present an approach for graph based SSL based on a
multi-component extension to the Gaussian MRF mod-
el, along with efficient algorithms to optimize model fit.
We demonstrate experimentally that our conceptually
simple approach achieves performance that is compa-
rable to the state of the art, and in some cases beats
them on standard benchmark datasets.

The standard Gaussian MRF model posits that the
precision (inverse covariance) matrix of the labels on
the examples is specified by the similarity graph. Our
multi-component extension assumes that the precision
matrix is a weighted linear combination of a collection
of fixed precision matrices. The combining weights are
our model parameters that need to be estimated from
the seeds.

Multiple precision matrices arise naturally in several
different scenarios. Here are a few seen commonly: 1.
For example, vertices could be videos, with one preci-
sion matrix to represent co-watch statistics, another for
visual/textual similarity between videos, and a third
to represent shared tags. While we often have good
approaches for tuning each precision matrix, it is not a
priori clear how to weight their combination. Depend-
ing on the classification task, co-watch statistics may
be highly important or almost irrelevant. 2. Settings
with important similarity information plus features on
the objects are also naturally modeled as multiple pre-
cision matrices. Consider the simple motivating case

in which each vertex has a vector of binary features.
For each feature, we introduce a special vertex, and a
separate precision matrix with entries connecting the
special vertex to each object with the feature. The
combined precision matrix then scores each original
vertex according to the summed weights of its features,
computing an arbitrary learned linear function of the
features. Thus, multiple precision matrices allow vertex
features and graph similarity to be combined naturally
in a single framework. The empirical validation for
this model is evident from our results. Learning the
optimal combination of precision matrices results in
significant accuracy increase over the baseline.

Our main contribution is an efficient algorithm for com-
puting the best-fit multi-component model based on
the MLE principle, and the induced labels. In contrast
to the usual Gaussian MRF model, an efficient esti-
mation of the MLE is computationally daunting here
since computing the likelihood requires computing the
determinant of the graph Laplacian. It is prohibitively
expensive to even approximate these determinants for
moderately sized graphs.

One could avoid computing the likelihood by using
a gradient ascent approach, which does not require
evaluating the likelihood. However, computing like-
lihood gradients involves computing matrix inverses,
and hence is also expensive. Nevertheless, building
on fast solvers for Laplacian matrices and randomized
trace estimation procedures, we bypass these obstacles
to present efficient algorithms for approximating these
gradients. These stochastic gradient approximations
can then be used in any gradient based method for
estimating the MLE weights.

We perform experiments on real-world citation net-
works that are de-facto benchmarks for graph-based
SSL (PubMed, Citeseer, CORA) (Section 5.2), com-
bining the underlying citation graphs with bi-partite
feature components. The best-fit model estimated by
our algorithm leads to significant improvements on all
datasets as compared to a simple combination of the
components, and just using the underlying citation
graphs. Our performance is better than that obtained
by state-of-the-art graph embedding methods [3], and
comparable to graph neural networks with attention
mechanisms [5, 6].

In our experiments above, we model the problem as
follows: we have one component corresponding to the
citation graph (this is the only component in the stan-
dard Gaussian MRF model for graph based SSL), and
for a selected set of features, we introduce a simple pre-
cision component each that adds a correlation among
all vertices that share this feature. Even this simple
approach of modeling the influence of a feature results
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in significant boosts in performance – demonstrating
the power of our framework. This is but one possible
simple way of incorporating features, and our frame-
work and algorithms can easily accommodate arbitrary
feature components.

Since the loss function is not concave, a gradient based
algorithm can get stuck in local maxima, and be unable
to estimate the MLE. However, our synthetic experi-
ments on small graphs (see Section 5.1) show that the
problem is well-behaved, and gradient ascent using gra-
dients estimated by our algorithm converges to MLE
estimates that are consistent with a grid search.

1.2 Related Works

There has been a great deal of work done on semi-
supervised learning in general and graph-based semi-
supervised learning in particular (e.g. [1, 2, 9, 10, 11, 12,
13, 14]). Due to space constraints, we direct the reader
to [5] for a thorough review of several works (e.g. [3, 4, 5,
6]) aiming to repeat the success of neural-network based
techniques on graph-based semi-supervised learning.

Our method can be viewed as an approach to SSL using
multiple graphs, a direction that has seen several pre-
vious works [15, 16, 17, 18, 19, 20, 21]. However, these
works have two major shortcomings. Firstly, many of
them (e.g. [15, 16, 20, 21]) are computationally inef-
ficient, requiring running time at least roughly cubic
in the number of examples. Secondly, the remaining
works [17, 18, 19] use an approximation of the Gaus-
sian MRF model, ignoring the normalizing determinant
term. This approximation results in best-fit models
consisting of a single component. These degenerate so-
lutions are then avoided by introducing regularizations
on the model parameters that are not always well mo-
tivated. Our paper presents a complete generalization
of the Gaussian MRF model to multiple graphs, and
crucially, provides efficient algorithms for computing
the best-fit model and predicted labels. It isn’t a priori
clear that moving fully into the GRF framework will
help empirically, but our experiments show that our
estimator significantly outperforms other GRF-style
approaches. Hence, we argue that our approach repre-
sents the correct version of multi-component graph SSL
in the GRF setting, and is both the first unbiased esti-
mator and the best-performing in this framework.The
power of our approach is evidenced by improved per-
formance without introducing regularization or new
hyperparameters.

2 Semi-Supervised Learning

Preliminaries: Graphs and Matrices. For any
graph G(V,E) with a function w specifying the edge

weights, the (weighted) Laplacian of G, LG, is an V ×V
matrix such that for i 6= j, Lij = −wij where wij is
the weight of edge (i, j), and Lii =

∑
j:j 6=i wij . For

any vector x ∈ RV , the Laplacian satisfies x>LGx =∑
i,j wij(xi−xj)2. The edge-vertex incidence matrix of

G, denoted BG is an V ×E matrix, where (BG)v,e is 1
if v is e’s head, −1 if v is e’s tail, and 0 otherwise (the
orientation of the edges can be picked arbitrarily). Let
WG denote the diagonal E × E matrix with diagonal
entries w(e). We have LG = BGWGB

>
G .

We now present the underlying model that the data is
assumed to be generated from.

Gaussian Random Field Model. Let V denote
the set of all examples (labeled and unlabeled), and
n = |V |. We assume we are given a graph G(V,E) that
encodes similarities between the all the points. A sub-
set of these examples S ⊆ V is labeled with real valued
observations, and are referred to as seeds. Let ŷS ∈ RS
denote the vector of these observations. A binary clas-
sification problem can be encoded using ŷS ∈ {0, 1}S ,
whereas a multi-class classification problem over [`] can
be encoded as ` binary classification problems.

The Gaussian random field model introduced in [1]
modeled the true underlying labels y ∈ RV as a multi-
variate Gaussian distribution with density

f (y) =
√

det(LG)
(2π)n/2 exp

(
− 1

2y>LGy
)
,

where LG denotes the weighted Laplacian of graph G.
Note that the Laplacian of G is a singular matrix, and
hence the above distribution is not well-defined. In the
rest of the paper, we assume that a small multiple of
the identity has been added to the Laplacian to make
it positive-definite.

For any label vector, y, let yS denote the vector re-
stricted to the seed set S. Conditioned on yS, we model
the observed labels on S, ŷS to be distributed as in-
dependent Gaussians with mean yS and variance 1

µ0
,

resulting in the joint probability density,

f (y, ŷS) =
√

det(LG)
(2π)n/2

(
µ0
2π
) |S|

2

exp
(
− 1

2y>LGy− µ0
2
∑
i∈S(yi − ŷi)2) .

Given the observations ŷS on the labeled examples,
we can easily compute the maximum a posteriori esti-
mate (MAP) for all the labels by solving the system
(LG +µ0IS)y = [µ0ŷ>S ,0]>, where IS is a 0/1 diagonal
matrix with (IS)ii = 1 iff i ∈ S, and we pad the vector
on the right using zeros to be n-dimensional. This is
essentially the estimate E[yS |ŷS] and follows from stan-
dard lemmas on multivariate Gaussian distributions.
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3 Multiple Components in the
Gaussian Random Field Model

Given several precision matrices Li for i = 1, . . . , k, for
observations on the same set of examples, we consider
the Gaussian MRF model defined by linear combina-
tions of Li, weighed by weights µi. Equivalently, we
have, LG =

∑k
i=1 µiLi. We assume that our observa-

tions ŷS arise from the Gaussian Random field model
with a precision matrix specified by LG. In this section,
we formulate the estimation problem for hyperparame-
ters µi.

Given the observations ŷS, we estimate {µi} using
the Maximum-Likelihood principle. We denote the
maximum likelihood estimate (MLE) of {µi} as {µ̂i}.
To compute {µ̂i}, we need to express the marginal
probability of observing ŷS. The following key lemma
allows us to write this marginal explicitly, and follows
from standard results on Gaussians.

Lemma 3.1. The marginal distribution of ŷS is a mul-
tivariate Gaussian distribution with mean 0 and covari-
ance 1

µ0
ΣŷS

, where, Σ−1
ŷS

= I −ΠS( 1
µ0
LG + IS)−1Π>S ,

where ΠS is an S × V matrix such that (ΠS)ij = 1
iff i = j. We can express ΣŷS

equivalently as follows,
ΣŷS

= I + ΠSL
−1Π>S .

For optimizing the marginal distribution of ŷS, it is
more useful to define αi = µi

µ0
for i ≥ 1. With this

re-parametrization, we can express Σ−1
ŷS

= I −ΠS(IS +∑n
i=1 αiLi)−1Π>S . Treating αi as variables independent

of µ0, ΣŷS
is independent of µ0. The above formulation

allows us to analytically express µ̂0, as given by the
following lemma.

Lemma 3.2. The MLE of µ0, denoted µ̂0 can be ex-
pressed analytically as µ̂0 = |S|

ŷ>S Σ−1

ŷS
ŷS
.

However, even in our synthetic experiments, this an-
alytic estimate of µ0 turned out to be significantly
inaccurate. Since µ0 controls the noise in the obser-
vations, we assume for the rest of the paper that µ0
is fixed to be some relatively large number, i.e., we
assume that the noise in observations is tiny. Thus, ig-
noring the terms constant in µ0, we obtain the following
theorem characterizing {µ̂i}i≥1.

Theorem 3.3. For i ≥ 0, µ̂i = µ0α̂i where {α̂i}i≥1 =
arg maxαi≥0 L({αi}), where

L({αi}) = log det(Σ−1
ŷS

)− µ0ŷ>S Σ−1
ŷS

ŷS, (1)

and Σ−1
ŷS

= I −ΠS(IS +
∑n
i=1 αiLi)−1Π>S .

4 Efficient Estimation of the MLE

Maximizing L for estimating {α̂i}i is computationally
challenging for several reasons: 1. There is no analytical
solution for {α̂i}i. 2. The loss L is non-concave. 3.
In fact, even computing L is costly. Specifically, the
covariance matrix ΣŷS

and its determinant are costly
to compute (or reliably estimate), and evaluating L for
n = 1000 is prohibitively expensive.

Our approach for maximizing L is based on (stochastic)
gradient descent. It has the distinct advantage that we
only need to compute (estimate) the gradients, and do
not need to compute the objective L explicitly. As we
show in the next lemma, we can express the required
gradients analytically. Later in the section, we present
an efficient algorithm for computing reliable estimates
for the gradients.
Lemma 4.1. Let L =

∑n
i=1 αiLi, and LS = L + IS .

For any i ≥ 1, we have,
∂L
∂αi

=Tr(ΣŷS
ΠSL

−1
S LiL

−1
S Π>S )

− µ0ŷ>S ΠSL
−1
S LiL

−1
S Π>S ŷS.

The expression ŷ>S ΠS(IS + L)−1Li(IS + L)−1Π>S ŷS in
the gradient can be interpreted as the energy contribut-
ed by the inferred labels to Gi. Exactly computing the
above gradients requires computing a matrix inverse,
which, is prohibitively expensive. In the next section,
we develop a fast algorithm that allows us to estimate
the gradients without computing the matrix inverse
explicitly.

4.1 Approximating the Gradients

We estimate the gradients by two key techniques. The
first involves estimating the trace term in the gradients
via Hutchinston’s method. This reduces trace esti-
mation to matrix-vector multiplications. The second
technique involves estimating consequently generated
matrix-inverse-vector products (and those in the second
term in the gradient), by using fast Laplacian solvers.

Approximating the Trace. The trace of a positive
semi-definite (PSD) matrix A can be estimated by
computing g>Ag, where g is a vector of independent
Rademacher random variables (+1,−1 with probability
1/2 each). The following result shows that just Θ(logn)
samples are enough for estimating the trace of an n×n
matrix with high probability.
Theorem 4.2 ([22, 23]). Given a PSD n× n matrix
A, and ε, δ > 0. Let g1, . . . , gk ∈ Rn be random vectors
where each coordinate is picked as an independent u-
niform random variable from ±1. If k ≥ 6

ε2 ln 2
δ , then

Egi g
>
i Agi = Tr(A), and with probability at least 1− δ,

we have | 1k
∑n
i=1 g

>
i Agi − Tr(A)| ≤ εTr(A).
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Algorithm 1 Estimating the gradients
{
∂L
∂αi

}
input Seed set S, observed values ŷS, precision matri-

ces Li, weights αi, number of estimates r

Construct L←
∑
i αiLi as a sparse matrix.

Compute Π>S ŷS by padding ŷS with zeros on non-
seed vertices.
Estimate (IS + L)−1(Π>S ŷS) using fast Laplacian
solvers (Theorem 4.4).
Compute ŷ>S Σ−1

ŷS
ŷS ← ŷ>S ŷS − (ŷSΠ>S )>((IS +

L)−1(ΠSŷS)).
for i← 1 to k do(

∂L
∂αi

)
1
← 0,

(
∂L
∂αi

)
2
← µ0((IS +

L)−1(Π>S ŷS))>Li(IS + L)−1(Π>S ŷS)
for j ← 1 to r do
Let bj be a random ±1 vector of (|S| +

∑
imi)-

dimensions.
Compute Mbj , for M given by Lem 4.3, using
Laplacian solvers for applying L−1.
Compute zj ← (IS + L)−1Π>SMbj .

for i← 1 to k do
(
∂L
∂αi

)
1
←
(
∂L
∂αi

)
1
+ 1
r z
>
j Lizj .

return
{(

∂L
∂αi

)
1
−
(
∂L
∂αi

)
2

}
i=1...k

An obstacle to applying this theorem is that
ΣŷS

ΠS(IS +L)−1Li(IS +L)−1Π>S is not a PSD matrix.
However, in case each of the Li is a Laplacian, the
following lemma allows us to estimate its trace as the
trace of a PSD matrix.
Lemma 4.3. If L is a graph Laplacian, let B and
W denote the edge-vertex incidence matrix, and the
diagonal weight matrix of the corresponding graph. Let
M be the matrix [I,ΠSL

−1BW
1
2 ]. ThenMM> = ΣŷS

,

and thus,

Tr(ΣŷS
ΠS(IS + L)−1Li(IS + L)−1Π>S )

= Tr(((IS + L)−1Π>SM)>Li((IS + L)−1Π>SM)).

The matrix ((IS +L)−1Π>SM)>Li((IS +L)−1Π>SM) is
PSD, and hence Theorem 4.2 applies.

Approximating matrix-inverse-vector product-
s. The trace estimator above reduces the estimation
to computing matrix vector products. In order to
approximate the gradients, we need to compute matrix-
vector products with matrices ΠS ,Π>S , (IS + L)−1, Li
and the matrix M given by Lemma 4.3. Multiplication
by ΠS ,Π>S , and Li is cheap and straightforward since
these matrices are sparse.

Multiplication with (IS + L)−1 is challenging. Given a
vector v, a straightforward approach to approximating

(IS + L)−1v is to solve the system (IS + L)x = v
approximately by using an iterative method such as
Conjugate Gradient. However, the running time of CG
scales as the square-root of the condition number of
(IS + L), which can be arbitrarily large if αi are large.

Since L is a symmetric diagonally dominant (SDD)
matrix, i.e. for all i, Lii ≥

∑
j 6=i |Lij |, we can use the

seminal work of [24] on Laplacian solvers (and a long
line of improvements, see [25] for more references) to
solve this system in time nearly-linear in the sparsity
of L.
Theorem 4.4 ([24, 26]). Given an n× n SDD matrix
L with m non-zeros, ε > 0, and a vector b = Lx̄, there
is an algorithm that outputs with high probability a
vector x such that ‖x− x̄‖L ≤ ε ‖x̄‖L , in expected time
O(m

√
logn log 1/ε) (up to log logn factors), where for

any v, ‖v‖L =
√
v>Lv.

Multiplication by the matrix M given by Lemma 4.3
reduces to multiplication by L−1, B, and W 1/2. B and
W 1/2 are sparse matrices with sparsity

∑
i |E(Gi)|, that

can be computed efficiently. We can efficiently multiply
with L−1 for a given vector v by using fast Laplacian
solvers discussed above. The following theorem sum-
marizes the running time guarantees of our algorithm
(Algorithm 1).
Theorem 4.5. Algorithm 1 returns unbiased esti-
mates for gradients ∂L

∂αi
and runs in expected time

O((
∑
imi)r log1/2 n log 1/ε), where mi = |Ei|, ε is the

machine accuracy, and r is the number of vectors used
for trace estimation. We pick r = Θ(ε−2 logn) in order
to get accurate unbiased estimates of all gradients in a
total run time of O((

∑
imi)ε−2 log3/2 n log 1/ε).

5 Experiments

We present the implementation details necessary for
stable and rapid convergence of our algorithm, fol-
lowed by our experimental results on synthetic and
real datasets. We experimentally compare our perfor-
mance to the state-of-the-art methods for graph based
SSL [3, 6, 11, 5, 4] on standard benchmark datasets.

[S: This para is new] For methods using multiple graphs,
we compare our performance with the most relevant
work of Kato et al. [19]. The experiments by Kato et al.
demonstrate the superior experimental performance of
their method relative to the works of Tsuda et al. [17]
and of Argyriou et al. [16].

Implementation Details. As mentioned in Section 3,
using the analytical expression for µ̂0 resulted in inac-
curate estimates even in synthetic experiments. Thus,
we treat µ0 as a hyperparameter in our method. We
specify µ0 for our synthetic experiments, and optimized
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µ0 for the datasets.

The form of the gradient ascent (since we’re maximiz-
ing L) update is important for a stable implementa-
tion. Since the weights αi need to be positive, the
usual answer would be to use Projected Gradient De-
scent (αi ← (αi + ν ∂L∂αi

)+, where ν is the learning
rate, and x+ = max{x, 0}). Projected gradient de-
scent results in unstable iterations since the gradients
are large and less reliable close to zero. Another op-
tion would be to use a mirror descent style update
(αi ← αi exp(ν ∂L∂αi

)). However, it often results in
large jumps in case of a noisy positive gradient (due
to the exponential). Instead, we used the following
hybrid update rule αi ← αi(1 + ν ∂L∂αi

), if ∂L
∂αi
≥ 0, and

αi ← αi exp(ν ∂L∂αi
), otherwise. where ν is the learning

rate. This hybrid update rule mitigates the above short-
comings, and leads to significantly more stable updates.
Additionally, if some component weights become too
small, we remove them from the optimization.

Finally, for solving Laplacian systems, since the work of
Spielman and Teng [24] which was very involved, there
has been much progress towards simpler and faster
solvers (see [25]). Though these algorithms are not
directly practical, practical implementations that are
small variants of the above theoretical algorithms are
available ([27, 28]). We used the solver implemented by
Dan Spielman and others [28] for our implementation.

5.1 Synthetic Experiments

We validated the correctness of our algorithm on several
small synthetic random graphs (100s of vertices). We
generated random graphs based on a random graph
model. We generated the underlying labels and the
observations according to the joint distribution defined
by the graphs and the seed penalty, and selected a
random subset of seeds. We ran our algorithm with
the seeds and the graph as input and compared the
algorithm’s estimates to the MLE estimates computed
using grid search.

We generated two types of random graphs. For type I,
we independently generated two Erdös-Renyi random
graphs with a given probability. They were combined
according to some pre-specified weights. Our algorithm
sees the two graphs but does not know the weight com-
bination. Type II graphs were random feature graphs
with 2 feature vertices each. Each feature-instance
pair is connected independently according to a given
probability. The two features are combined according
to some pre-specified weights that are not available to
the algorithm. Table 1 summarizes the results on these
synthetic graphs for a representative set of parameters.
The last column reports the average `1 distance be-

tween the weights estimated by our algorithm and the
MLE. In all the cases presented here the fraction of
vertices that are seeds was 0.2.

As can be observed, the average distance was always
less than twice the resolution of the grid. In almost
all the instances, when supplied with sufficient number
of random labels the algorithm converged to a point
very close to the MLE. While the objective function
that we maximize, L, is not concave in the weights,
we observed from these experiments on random graphs
that the loss landscape seems very well behaved and
gradient ascent always seems to converges to the MLE.

5.2 Performance on Real-world Datasets

We tested our approach on three datasets involving
scientific publications, namely, Cora, Citeseer and
Pubmed [29]. These datasets were obtained from the
LINQS website [30]. For experiments based on the
splits provided by [3], the datasets were obtained from
their github repository [31].

The three datasets have a very similar structure. T-
wo types of graphs are constructed for each of these
datasets. The first is a citation graph derived from
bibliographic information. There is an edge for each
citation connecting the cited paper to the citing pa-
per. The second type of graph is constructed from
text features associated with each publication. Papers
have high-dimensional text feature vectors associated
with them. Each co-ordinate in these feature vectors
corresponds to some term. In the Cora and Citeseer
datasets the feature vectors are 0/1 vectors indicating
whether the corresponding word is absent or present
in the publication. In the Pubmed dataset, the value
represents the tf-idf statistic for the corresponding ter-
m. Given these feature vectors we construct bipartite
feature graphs with edges connecting instance vertices
to feature vertices. We construct feature graphs by
selecting a subset of the features as described below.
In all the datasets, the papers are classified into classes.
Given true labels for a small subset of papers, the task
is to use the citation graphs and feature vectors to
obtain classifications for all the papers.

In all our experiments, we learn a weight for the citation
graph and one weight for each of the feature graphs.
We perform two types of experiments. In one we select
seeds, test and validation vertices according to the split
used in [3]. In the second, we randomly selected 20
instance vertices for each class to be the seed vertices, a
random subset of 500 vertices to be validation vertices
and a random subset of 1000 to be test vertices. Since
the number of seeds is small it is not feasible to learn
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Table 1: Results on synthetic graphs

Type #Vertices Density Weights #Instances Grid resolution Avg. `1 dist.
I 100 0.1 (1.0, 0.5) 25 0.05 0.083
I 200 0.1 (1.0, 0.5) 25 0.05 0.036
II 100 0.7 (1.0, 0.5) 9 0.1 0.079
II 100 0.7 (1.5, 0.5) 9 0.1 0.073
II 500 0.7 (1.5, 0.5) 9 0.1 0.045

Table 2: Dataset sizes
Dataset Classes Instances Citation edges Features Feature edges Labeled
Cora 7 2708 5429 10 2631 140
Citeseer 6 3327 4732 10 4124 120
Pubmed 3 19717 88676 10 5372 60

Table 3: Classification Accuracy in percent on fixed splits from [3, 31]

Method Cora Citeseer Pubmed
MLP 55.1% 46.5% 71.4%
ManiReg 59.5% 60.1% 70.7%
SemiEmb (Weston et al., 2012) 59.0% 59.6% 71.7%
LP (Zhu et al., 2003) with CMN 68.0% 45.3% 63.0%
DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%
ICA (Lu and Getoor, 2003) 75.1% 69.1% 73.9%
Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
GCN (Kipf and Welling, 2017) 81.5% 70.3% 79.0%
AGNN (Thekumparampil et al., 2018) 82.6% 71.7% 79.9%
GAT (Velickovic et al., 2018) 83.0% 72.5% 79.0%
Multi-Component MRF (this paper) 80.8% 69.7% 75.3%

Table 4: Classification Accuracy in percent on random splits (all other numbers from [6])

Method Cora Citeseer Pubmed
DeepWalk (Perozzi et al., 2014) 70.2% 47.2% 72.0%
Node2vec (Grover and Leskovec, 2016) 72.9% 47.3% 72.4%
Robust LP (Kato et al. 2009) 73.8 ± 2.6% 66.5 ± 2.0% 75.4 ± 1.4%
Bootstrap (Buchnik and Cohen, 2017) 78.2% 50.3% 75.6%
AGNN (Thekumparampil et al., 2018) 81.0% 69.8% 78.0%
Citation graph with CMN 74.0 ± 1.4% 47.6 ± 1.8% 73.8 ± 1.1%
Citation graph + feature graph with CMN 73.8 ± 2.6% 66.5 ± 2.0% 75.4 ± 1.4%
Multi-Component MRF (this paper) 78.8 ± 1.5% 66.8 ± 2.0% 76.9 ± 1.2%

as many weights as the total number of features (e.g.,
the Cora dataset has 1433 features and 140 seeds).
Therefore, we perform feature selection to restrict the
number of feature graphs. Table 2 summarizes the
graph sizes after feature selection.

Feature selection procedure: To select the features
we build a set of one-versus-all `1-regularized logistic
regression models. From each model we add the fea-
tures with the largest absolute coefficients to the set
of selected features. We pick a value for the `1 penalty
that results in the size of the set of selected features to

be a pre-specified number, say 10 or 20.

Once the features are selected, we consider the set of
feature graphs corresponding to these features. We
treat the set of edges incident on each feature as a sepa-
rate feature graph and learn its weight. The weights on
the edges are given by the values corresponding to that
feature in the feature vectors. We run our algorithm on
these graphs to learn the weights. Following this, we
ran label propagation on the graph until convergence,
post-processed the learned labels using class mass nor-
malization (CMN) as in [1], and classified each vertex
according to the label with the largest weight. Class
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Table 5: Classification Accuracy in percent on random splits under various feature selection scenarios

Feature Selection Method Cora Citeseer Pubmed
Combined graph (all weights 1.0) 60.9 ± 2.7% 53 ± 2.1% 73.7 ± 2.7%
Reweighted graph (without feature selection) 72.8 ± 1.4% 57.6 ± 1.2% 73.7 ± 2.7%
Reweighted graph (with feature selection) 78.8 ± 1.5% 66.8 ± 2.0% 76.9 ± 1.2%

mass normalization scales the label weights so that for
every label, the average label weight across all vertices
matches the prior as computed from the seeds (in our
case uniform). We selected the best set of weights
based on the performance on the validation set.

Besides competing approaches, we compare ourselves
against two configurations. The first assigns a weight
of 1.0 to all the graphs and performs label propagation
on this combination. The second is the citation graph,
which implies a weight of 1.0 to the citation graph
and 0.0 to all the feature graphs. The results are
presented in Table 3 for the Planetoid splits and in 4
for the random splits (10 independent choices of seed,
validation and test vertices). On the random splits
the algorithm beats the available results for graph
embedding based approaches on all three datasets. It
is competitive with the Attention based Graph Neural
Networks [6, 5]. On the Planetoid splits, the algorithm
beats Planetoid [3] on Cora and Citeseer datasets. It
is competitive with Planetoid on pubmed.

We implemented the method of Kato et al., and report
their performance on our citation network experiments.
We observed that for all the citation networks and a
very wide range of hyper-parameter values, the weight
vector of the constituent graphs converged to a scaled
all-ones vector. Thus, the final performance on the
three datasets was identical to that of a combined
graph with all weights equal to 1.0.

Effect of Feature Selection: To isolate the effect of
feature selection, we performed an ablation study. We
tested the performance of our algorithm with and with-
out feature selection, and show the results in Table 5.
The results are reported for random splits. Row 1 shows
the performance obtained if all graphs are weighted
equally and no optimization is performed. Row 2 shows
results for our algorithm without feature selection, with
significant improvements in the case of Citeseer and
Cora. The number of parameters to be learned (Cite-
seer: 3704, Cora: 1434, Pubmed: 501) is much more
than the number of labelled examples (20 * number
of classes) when all the features are used. Hence, as
shown in Row 3, feature selection does improve our
results.
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