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ABSTRACT search. In search, it is common to introduce diversity by mixing in

The phenomenal growth in the volume of easily accessible infor- different interpretations of a query, as in [11], or by attempting to

mation via various web-based services has made it essential forconstryct result ;ets to be pairwise distant, as in [3]. The gga_l in
service providers to provide users with personalized representa-these instances is largely to cater to the needs of multiple distinct

tive summaries of such information. Further, online commercial user ty[l)es, ﬁaCh of whom enterdthe nge query,l but with dlffet;
services including social networking and micro-blogging websites, €Nt 9oals. The system may provide a diverse result set to meet the
e-commerce portals, leisure and entertainment websites, etc. rec_ne_eds of dlffer_ent types 5|multa}neously, even though a single user
ommend interesting content to users that is simultaneously diversemlght be. happlest with a non-d!verse res.ult.s.et. An alternate form
on many different axes such as topic, geographic specificity, etc. Of the diversity problem, in Wh'Ch. each _|nd|_v|dual user prefer_s a
The key algorithmic question in all these applications is the gen- dlver_se result set_, Presef‘ts itself in app!lcat_lons such as providing
eration of a succinct, representative, and relevant summary from a®90ing novelty in a series of entertaining items, or a balance of
large stream of data coming from a variety of sources. In this pa- opgwlon_sf_on”a sensitive t_cszlc. h bl ¢ select b ;
per, we formally model this optimization problem, identify its key | pechl Ically, we ICOHSI erltdg probiem OI .scls edqtlng su Set_f_h(.)
structural characteristics, and use these observations to design affe™s that are simultaneously diverse in multiple dimensions. This
extremely scalable and efficient algorithm. We analyze the algo- problem arises in gvarlety of contexts. AS. a toy exa’.“p'e' consider
rithm using theoretical techniques to show that it always produces the task_ of selecting the_ program comm|ttee_for this con_ference.
a nearly optimal solution. In addition, we perform large-scale ex- The cha|r§ were faced_ W't.h the'task of prodL!cmg a committee that
periments on both real-world and synthetically generated datasets Ofers sufficient expertise in all important topics of the conference,
which confirm that our algorithm performs even better than its ana- V‘{g!le s'mUItZHGQUSI¥ covgrlng dlff_ergnt _reéglons of the world(,j pro-
lytical guarantees in practice, and also outperforms other candidate"! é”g a]lcgok:) mix of gender, seniority, Indusiry versus academia,
algorithms for the problem by a wide margin. and so forth. L .

Many other examples exist in natural settings. An e-commerce
website may wish to show televisions covering multiple technolo-

Categones and SUbJeCt DeSCI’IptOI’S gies, screen dimensions, manufacturers, and price points. Or a

H.3 [Information Systemg: Information Storage and Retrieval website offering pre-packaged vacation travel may be interested in
showing customers a small set of options that cover a wide range of
General Terms alternatives: domestic or international; cheap or expensive; family-

friendly or romantic; and so on. Similarly, as an example we will
consider more closely below, consider a system recommending in-
teresting content to a user. The system aims to provide content that

Algorithms, Performance

Keywords is simultaneously diverse along a variety of axes including topic
Result Diversity, Online Algorithm (sports vs. politics vs. technology), geographic specificity (world

news vs. national news), voice (humorous, scandalous, contrapun
1. INTRODUCTION tal), and media type (videos vs. blog articles).

) ) o ) In some of these applications, the itemset presented to a user

The problem of result-set diversity has been studied in multi- myst be personalized to cater to her individual tastes and prefer-
ple domains, but perhaps the most robust literature exists in webences. Selecting a distinct itemset for each individual user from a
*Part of this work was done while the author was an intern at V'Y I_arge corpus OT items is pa_rticularly challengi_ng from a com-
Google Research, Mountain View, CA. putational perspectlve_. To alleviate this computational bottleneck,
we suggest the following natural two-step process: use a very ef-

ficient algorithm to select a single representative itemset of inter-

mediate size that caters to the tastes of all users, and then generate
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personal or classroom use is granted without fee providatidbpies are ing more resource-intensive techniques. Since user prefererces a
not made or distributed for profit or commercial advantage aatidbpies typically very diverse, it is important that the intermediate itemset
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terests. Therefore, our techniques for selecting a diverse itemset



are useful even for applications such as news feeds in social net-
working websites that involve a high degree of personalization.

Note that it is important to be simultaneously diverse in all di-
mensions; in our program committee example, for instance, no
amount of diversity in national origin will rescue the hapless com-
mittee constituted entirely of experts in itemset discovery. Sim-
ilarly, geographical diversity of news feeds in a news aggregator
website will not compensate for lack of diversity in the topics spanned
by the articles. Hence, while we will discuss other metrics, our re-
sults will focus on maximizing the worst-case coverage over all
features.

Further, in most web/internet based applications, the system must
make a commitment to certain items before other items are avail-
able for consideration. This may occur because candidates truly
arrive in an online manner over time, or because a large dataset
is to be processed in a streaming manner, or more commonly, be-
cause each page of results must be produced at the lowest possi-
ble latency. A user should be provided with a diverse experience
over many pageviews, and perhaps even many sessions, but the
first response must be committed before future requests are known.

sarial input instances. We then present a novel algorithm for
the diversification problem. As the main theoretical result of
our paper (Theorem 6), we prove that the algorithm achieves
an approximation ratio of 50% on the objective function, pro-
vided the optimum coverage is large enough, and the items
are drawnindependenthandidentically (i.i.d.) from some
probability distribution (that is unknown to the algorithm).
The theoretical analysis and techniques presented here are
novel, and the main algorithm is simple, easy to implement,
and lightweight, and therefore potentially applicable to a very
wide range of scenarios (cf. Section 4).

. We perform comprehensive experimental evaluation on real-

world data obtained from a commercial news feed generator,
as well as several synthetically generated data sets. The ex-
perimental results not only conclusively corroborate our the-
oretical findings but also show that our algorithm performs
significantly better than its analytical guarantees on all data
sets. In fact, the performance of the algorithm is close to op-
timal for the minimum coverage feature and very good even

Hence, an algorithm that operates purely in an offline context may
not extend naturally to each successive request.
This variant of the problem arises in content recommendation,

for subsequent low-coverage features (cf. Section 5). Fur-
ther, the algorithm outperforms a set of natural and intuitive
algorithms for the diversification problem by a wide margin.

news feeds applications on news websites, search-type interfaces

for web search, e-commerce search (asr@zon. conj, item
search (as atbay. con), and so forth. We are primarily moti-
vated by the problem of providing a stream of interesting content,

where the items need to be presented in a timely manner with con-

sideration for a variety of attribute features, each of which could
have varying ranges and densities. Therefore (irrevocable) deci-
sions on whether new items should be shown or skipped need to be
made in an online manner.

We abstract this problem as follows. A stream of items, each
decorated with features, arrives over time. As each item arrives
the algorithm must accept or decline it. The algorithm must select

as many items as specified by a budget, and its score is the coverag

of the least populous feature in the final set.

The content recommendation problem by which we are moti-
vated differs from the abstract formulation in few key ways; we
recap these differences here. First, the diversifier will typically

have access to constant-size batches of input, rather than individua'f

items. However, the asymptotic behavior of our problem is un-

changed in this case, so we may focus our attention on the simpler

variant. Next, the diversifier is required to “trade off” diversity with

the quality of items selected into the result set. There are several

natural mechanisms to incorporate item quality into the formula-
tion, which we describe later. Finally, we study coverage of the
worst feature, but in certain settings it may be important to study

other variants, such as the average feature. We survey the results

for other norms, and also present empirical results analyzing our
algorithms with respect to low-performing features other than the
worst.

Our Contributions. We now give a high-level overview of the
contributions of this paper.

1. We formalize the problem of online diversification on multi-
dimensional featured items. In our problem formulation, the
objective is to maximize the minimum coverage over all fea-
tures, but we also present simple results for other variants of
this formulation, both in the offline and the online settings
(cf. Sections 2 and 3).

2. We theoretically analyze our problem formulation by show-
ing hardness results for specific small-coverage and adver-

2. DIVERSIFICATION FUNCTIONS

As described in the introduction, our high-level objective is to se-
lect a small collection of items that are diverse with respect to their
constituent features or dimensions, from a large corpus of multi-
dimensional items. In this section, we discuss multiple variants of
the problem, all of which represent the high-level goal of diversifi-
catlon and ultimately converge to a particular problem formulation
that we focus on for the rest of the paper.

First, we establish some notation that we will use throughout the

' paper. LetF' be the set of: features. As described in the intro-

duction, the input consists of a détof m items, where each item

€ U consists of a subset of featuré$ C F. The diversifica-
t|on algorithm needs to select a representative supsdtat most
B items, whereB is a given budget, from the input sét The
coverageof featurei € F'in the selected subsst denoted byC;,
is defined as the number of items $hthat have featureé. Each
eature also has target T; which is the desired coverage for the
feature. Theractional coverageof feature: is the fraction of its
target coverage that has been achieved by the selected set of items,
i.e. ¢; = C;/T;. Letc be the vector of fractional coverages, i.e.

c = (¢ : @ € F); then the objective is to select a subsethat
maximizes the value ab(c), whereD is the diversification func-
tion of interest.

We consider two versions of the diversification problem depend-
|ng on whether the entire séf is available to the algorithm be-
fore it starts selecting the items . For example, in selecting
a program committee from a set of researchers, the entire set of
researchers is known to the program committee chairs before any
selection decision is taken. We call this tbi#line version of the
problem. On the other hand, consider the diversification problem
in generating news feeds. In this case, the diversification algorithm
needs to select news items as they arrive, i.e. without having access
to the entire input set of items. We call this theineversion of the
problem. Thus, in the online model, on the arrival of an itgrithe
algorithm must immediately either select or discard it, subject to
the constraint that the total number of selected items cannot exceed
B. We assume that each item in the online input stream is drawn
i.i.d. from some probability distribution on a set of features that is
unknowrto the algorithm.



Perhaps the simplest objective functibhthat one can aim for

We now focus on another natural candidate function for diversifi-

while selecting a representative subset from a large set of items iscation, where the objective is to maximize the minimum fractional

to maximize the sum of fractional coverages of all the features, i.e.
D(c) = Z .
i€F

However, observe that this function fails to distinguish between a

coverage all features. That is,
D(c) = ming;
(c) min ¢

Observe that this function achieves the twin objectivesnafyni-
tude andfairnessof feature coverage. This function it sub-

subset of items that achieves large coverage on a few features bufnoqular, and therefore, the techniques described above cannot be
very small coverage on the remaining features, and a different sub- ;54 to solve this problem.

set of items that achieves uniform moderate coverage on all fea-
tures. Intuitively, the second subset is clearly more diverse, and
hence should be preferred. A diversification function that reflects

this intuition is
D(c) = pi
ieF

wherep; = 1if ¢; > 0, andp, = 0 otherwise. This function

clearly distinguishes between the two subsets of items described

Let copr be the optimal value ob and
PopT = CopT I_nin T;.
el
The next theorem (proof deferred to the full version) shows that the

problem does not admit an algorithm with a finite approximation
ratio even in the offline setting, fopr = o(logn).

THEOREM 3. Under standard complexity-theoretic assumptions,
there exists no algorithm that obtains a finite approximation ratio

above, but has the shortcoming that it treats all non-zero coveragery, offline instances of the diversification problem whese: —

values identically. In fact, these two functions are the extreme ends
of a continuum of candidate functions

Da(e)=) ¢, 0<a<1
i€l
that represents the classical trade-off between maximiziagni-
tude(cf. the first function, i.e.« = 1) and ensurindairness(cf.
the second function, i.ex = 0).

By a slight abuse of notation, let us also denote the value of the
function D, on the coverage achieved by a set of selected items
S asD.(S). It can be shown that all such functiof, (S) (for
0 < a < 1) aremonotonically increasing submodutaunctions.
Consider agreedyalgorithm that repeatedly selects the item that
yields the maximum increase in the value of the objective until the
entire budget has been used up. It is well-known that this algo-
rithm has an approximation factor 6f — 1/¢) for the problem of
maximizing any monotonically increasing submodular function.

THEOREM 1. For anya betweerd and1, the greedy algorithm
has an approximation factor ¢ft —1/¢) for maximizingD,, in the
offline setting.

In the online setting, if the optimal value of objective function
is known, then a standard thresholding technique yields an algo-
rithm with a constant competitive rafioOn the other hand, if the
optimum is unknown, then we can guess its value using a standar
doubling technique. The key property that we exploit in this guess-
ing scheme is that the input stream is drawn i.i.d., and therefore
only a small fraction of the budget is used in obtaining a good esti-
mate of the optimum. (The proof of this theorem is deferred to the
full version of the paper.)

THEOREM 2. For any« betweerD and 1, there exists an algo-
rithm that has a constant competitive ratio for maximizibg in
the online setting, if the input is drawn i.i.d.

1A function f defined on all subsets of a ground 32ts said to be
monotonically increasing for any A C B,

f(A) < f(B),

and is said to beubmodulaif for any A C B and for anyx € X,

fAu{z}) — f(A) = f(BU{z}) — f(B).

%For a maximization problem, an online algorithm has a competi-
tive ratio of 3 if the objective value in the solution produced by the
algorithm is at leasg-times the offline optimum.

o(logn).

The above theorem implies that we need to assume that the opti-
mal solution satisfieporr = Q(logn), in order to obtain a finite
approximation ratio. (In fact, this assumption holds for most real
data sets, as verified later in the experimental section.) If this prop-
erty is satisfied by an offline instance of the problem, then a simple
algorithm that employs randomized rounding of the natural linear
programming formulation of the problem gives the following the-
orem. (The proof of this theorem is deferred to the full version of
the paper.)

THEOREM 4. For the problem of maximizin@ in the offline
setting, there is a PTASf the optimum i€(log n).

Now, we focus on the online version of the problem. The next
theorem (proof deferred to the full version) shows that we need to
assume that the input stream is not adversarial in order to obtain a
sub-polynomial competitive ratio for this problem.

THEOREM 5. For an adversarial input stream, the competitive
ratio of any algorithm for maximizind in the online setting is

To overcome the barrier imposed by the above theorem, we assume
that the input is drawn i.i.d. from a probability distribution that is

gunknown to the algorithm.

3. PROBLEM FORMULATION

As described in the previous section, we focus on the following
problem formulation, which we call theIBERSIFIER problem.

Let F' be a set of features arfd be the target coverage for|
featurei € F. An input setU of m items arrives online,
where the set of features; C F' in each itemj € U is
drawn i.i.d. from a probability distribution on subsets of
F that is unknown to the algorithm. The algorithm mus
decide, on the arrival of iterjy whether to select or discard
it. The overall goal is to select a subsgtof at mostB
items that maximizemin;cr ¢; = min;ep <, whereC;

is the number of items i’ that contain featurée

—

3A Polynomial-time Approximation Scherfer PTAS) for a maxi-
mization problem is an algorithm that has an approximation factor
of (1 — ¢) for any arbitrarily small constart > 0. (The running
time of the algorithm depends on the choice 9f



Main Result. We give an online algorithm for the IDERSIFIER coprT ‘

problem which proves the next theorem. Z wsps 2 —_— VieF
THEOREM 6. There is a deterministic online algorithm for the Seres B

DIVERSIFIER problem that has a competitive ratio éf— ¢ for Z wsps < —

any § > 0 with probability (over the input distribution) at least SCF m

1 — 1/n, provided the input is drawn i.i.d. from an (unknown) 0 < ws < 1 VSCF

probability distribution on feature sets satisfying the property that
the expected value pber > 2432 _ )
Figure 1: A linear program for the DIVERSIFIER problem.

Our Techniques. Consider the special case where all targétare
equal to the budgeB. Further, assume that we have the guarantee
that the expected value @her = coprB = Q(log® n) (Which is
stronger than that required by Theorem 6). Then, we can partition
the input intolog n epochs where in each epoch, the algorithm
selects at mosB/ log n subsets from an input stream containing
m/ logn items, and aims at achieving an expected minimum cov- o(k) = o (k/copr)
erage of\ = ({1, ’

Now, instead of achieving a coverage)ofor each feature, letus  wherea is a constant that we will fix later. We also define
change our goal in any epoch to achieving a cumulative coverage B oo
of 2(n)) over all features, where the contribution of any single D(k) = / o(7)dj.
feature to this sum is at mogti.e. >, ., min(Ci, \) = Q(nA). i=k
This can be achieved by using a thresholding algorithm that selects|f the current collection of selected items has fractional coverage
an itemif and only ifit contains at leas® (2*12£™) features € F for some featuré € Fj for the current iteny, then the reward;;
with current coverag€’; < A. This immediately implies, via an  of item j due to feature is defined ag(c;). The overall rewarat;
averaging argument, that some constant fraction of features haveof item j is defined as the sum of rewards of its constituent features,
achieved a coverage 6¥(\). We discard these features in the next j.e. Ty = ZieF- :;. At any stage of the algorithm, the remaining
epoch and recurse. Since the number of retained features decreasgeyard for feature is
by a constant factor in every epoch, the coverage on every feature B B
is () at the end ofog n epochs. Therefore, this algorithm yields ©; = ®(ci),
a competitive ratio 0O (logn).

To transform the algorithm described above to an algorithm that
proves Theorem 6, we need to make the following improvements: b= Z B;.

algorithm. However, for the sake of simplicity, we assume through-
out that we know:opr.

As sketched in the previous section, our algorithm uses a reward
function¢ defined as

and the overall remaining reward is

e Improve the competitive ratio of the algorithm to a constant. er

« Generalize the algorithm to handle arbitrary targéts The online algorithm selects the current itgrif and only if

e Relax the constraint on the expected valupgt from Q(log? n) ;> ¢ln "

to Q(logn). B

d where~ is a constant we will fix later. The algorithm terminates
when either the input stream has been exhausted or the algorithm
has already selectdd items.

The previous algorithm can be interpreted in terms of a rewar
function which gives a reward of 1 every time a feature is cov-
ered until the feature has been coveretiimes, at which point the
reward on covering the feature drops to 0. The algorithm then es- Anaysis. First, we state a property of the reward function that we
sentially sets a threshold proportional to the ratio of the remaining \yjj| yse later in the analysis of the algorithm.

rewards to the remaining budget, and selects an item if it meets this

reward threshold. However, observe that the algorithm fails to dif- ~ FACT 1. Foranyk > 0, ®(k) = (=21 (k).

ferentiate between covering a feature that already has a large cov-

erage (but less thak), and a feature that has smaller coverage. To Now, consider the linear program (LP) for theMBRSIFIER prob-
make this distinction, we introduce a smoother reward function in leminFig. 1. Hereps denotes the probability of iteghin the input
the next section, and show that this simple thresholding algorithm Stream having’; = S for any j, andws is the fraction to which
for the new reward function achieves all the three goals outlined Such an item is chosen in the optimal fractional (offline) solution.

above. Since the expected optimal value of the objectivesis, this LP is
feasible.
4. THE DIVERSIFICATION ALGORITHM Recall thatpopr = coprmin;er T;. For simplicity of notation,

. . . . . . let us also denote the expected valuegf: by popr itself in the rest
In this section, we describe the diversification algorithm, and use qf this section. The next lemma lower bounds the probability that

analytical techniques to show that it proves Theorem 6. The al- 4y jtem is chosen by our algorithm if it has not already exhausted
gorithm uses the expected optimal value of the objective function g budget.

denoted byeopr. If copr is NOt known, we can guesser, and up-

date our guess repeatedly by doubling, as outlined in the previous LEMMA 1. Atany stage of the algorithm, the expected decrease
section. Since the input stream of items is drawn i.i.d. from some in & for the next item in the input stream is at ledst — ;) @lnn
(unknown) probability distribution, it can be shown that the com- Further. th bability that th . i the i v)om .
petitive ratio of the algorithm remains a constant even if the ex- urther, the probability that the next item in the Input stream Is

pected optimal value of the objective function is not known to the selected by the algorithm is at Iea(sl - o%) et



PROOF Consider a hypothetical algorithm that chooses ifem
having a feature sef; = S with probability ws. The expected
decrease o for this algorithm at any stage is

> pswsz (’b )

SCF i€S

alnn
= - E E wsps
OPT / ieF Ti SCFiiesS

IV

_ alnn 3.
m
Let
Cj
s = 3 20
ieS K
and

zs = psws(m/B).
Then, we have

alnn =
Zyszs > ( 5 >‘I>
SCF
ZZS < 1.
SCF

By standard convexity arguments, we can conclude that

Z e > a_l i)lnn
Yszs = ~y B

. PInn
SQFWSZ,YT

which implies that the expected decreas@idue to the next item
in the input stream is

<I>1nn
Z wspsys > (o — —
~y m

. P Inn
SgF‘ySZT

Further, the maximum decreaseddue to a single item is

glga;(zs ¢§f;) < ZF d)éf;) _ (alnn) Z > (alnn) 5
ic ic

CopT PoprT

Sincews < 1forall S C F,
1
E ps = E psws > (1 - 7) poret.
_ _ ary m
SCFys> Tt SCFys> T

O

The above lemma implies that if the algorithm has not selefted

items already, then the next item in the input stream is selected with

probability

1 PopT
>(1-— ) B2
vz (1-25)

and if the next item is selected, then the valu@aiecreases to at

most
(171 (afl) “‘J)@gn—ﬁé.
p Y m

The next lemma asserts thatdder = Q(Inn) and the algorithm
does not selecB items, then the value ob when the algorithm
terminates is small.

LEMMA 2. Suppose the algorithm does not selBdtems. Fur-
ther, let popr > —22%—~. Then, the value ob when the al-
2(1-3%)
gorithm terminates is at mosik(l*e)(a
leastl — 1/n.

7%) with probability at
PrROOF The expected number of items selected by the algo-

rithm is
1 3lnn
me(lff)popTZ 5 -
ary €

Therefore, by Chernoff bounds [10], the valuelofvhen the algo-
rithm terminates is at most

o — 1
- 7‘97” (1—e)pm
n n =

with probability at least — 1/n. [

nl*(l*é)(&*%)

Finally, we consider the case when the algorithm uses up its entire
budget, i.e. selectB items.

LemmA 3. If the algorithm selectd3 items, then the value of
— 1
® when the algorithm terminates is at mest = .

PROOF When the algorithm selects an item, the valu@afe-

creases to at most
(1 — m—n) P < nwaB.
B -

Therefore, the value ob when the algorithm terminates after se-
lecting B items is at most

1 1—1
n /W-n:n v,

O

We now sety = (
lemmas in the foIIowmg lemma.

3(2—¢)Inn
€2

LEMMA 4. If popr > , then the value ob when the

algorithm terminates is at mo&f’“(g) with probability at least
1-1/n.
The next lemma bounds the competitive ratio of the algorithm.

LEMMA 5. If popr > 23=910

, then the competitive ratio of

the algorithm is at mos(é:;
1/n.

PROOF Suppose not, and léf,in be the feature with the mini-
mum fractional coverage at the end of the algorithm. Then,

) — L with probability at leastl —

l—e_ 1 1—c

:nia(Q—e a) >n1 a(2 5)7

o > P,

Tmin

which violates Lemma 4. [

Observe that since< 1,

1—€> 1
— — €.
2—c¢ 2

We now obtain Theorem 6 by setting= 6/2 anda = 2/0.



5. EXPERIMENTS vector is set to all's. Therefore, there is uniform correlation

We perform experiments on both real-world and synthetically between all item features.

generated data setg an(_j_compare our dlvers_lflcatlon algorithm with 5.2 Algorithms

several natural and intuitive alternative algorithms for the problem. } ) )

Our experimental evaluation compares the performance of these We now describe all the algorithms that we compare in our ex-

algorithms measured in terms of feature coverage by varying mul- P€rments.

tiple parameters. We first describe the data sets used in our experipijversifier. This is the diversification algorithm in Section 4.

ments; next we describe the alternative algorithms we compare our . ) . . )

algorithm against; and finally we describe the experiments that we Diversifier (Uniform Coverage). This algorithm is the same as the

perform and interpret the results we obtain in these experiments.  diversifier presented previously with a small difference that the re-
ward functiong is not decreasing; in particular, the reward function

5.1 Description of Data Sets is fixed at¢(k) = 1. Comparing with this algorithm highlights the
importance of the decreasing reward function in the diversification

Real-world news feeds.This dataset is obtained from the stream algorithm.

of items received by a commercial news feed generator, from which Fixed Threshold. The fixed threshold algorithm is a naive base-

it selects a news feed for individual users. Each item considered hasl_ laorith h ific threshold is fixed he beginni
several features associated with it, such as the source of the item ine algorithm where a specific threshold Is fixed at the beginning

the broad category it belongs to, the types of contents in it etc. We (Petweenl and18, the number of features). Subsequently, when
extracted 18 features such that each item has a binary value assollems arrive °T‘"”_e’ every m_em that has a}t least as many features as
ciated with each feature (that is, either has or does not have thethe th_reSh_O.ld IS plcked,_untll the _budge_t S exhausted. We compare
feature). This feature set includes a variety of dense (i.e. present inour diversification algorithm against this fixed threshold algorithm

a large fraction of items) as well as sparse features such as whethe or different thresholds. We perfarmed experiments with all POSSI-
the item has an embedded video, is in English language, is about le thresholds betweehand 18 but present only a representative

Politics or Sports, and so on. The selection of these 18 features Wasset (.)f results, for thresholds 6.’ 9,12,15. The perf"r”.‘a'.”ce of
aimed at capturing multiple kinds of dependencies: e.g., hierarchi- the fixed threshold algorithm with other thresholds is similar to the
cal dependency (i.e. a feature occurs always with another feature) °"€S W€ show.

exclusivity (an item can have only one of a set of features), dense Simple Random. In this algorithm, items are selected randomly
features, or very sparse features. These features were chosen ibased on the number of features they contain, in such a way that the
a careful manner so as to test the performance of the diversifica-expected number selected items equals the buBlgethe proba-

tion algorithm on dependencies, on sparse features (i.e. even whenijlity that an item containing; features is picked is determined by
the optimum is small), on very commonly occurring features, etc. optimally solving a linear program that aims to maximize the cov-
We ran our experiments on 100 such different data sets, each conerage on every feature. This algorithm performs two passes over
taining about a million items with feature vectors along these 18 the input stream of items: in the first pass, it computes frequency
dimensions. counts of features and uses them to obtain the probability of se-
lecting an item withk features. In the second pass, it uses these

Synthetically generated data.In addition to the real data set, we probabilities to actually select the items.

also test our algorithm on various carefully chosen synthetically
generated data sets. In each of these data sets, we again generat§l3  Description of the Experiments

“e.”.‘s W.ith 18 features and tested_ the algorithms on data sets of MEprted CoverageIn this experiment, we evaluate the performance
g::mnnems each. The synthetic data sets we tested on are theof each of the algorithms on the coverage achieved on the features.
9 Recall that our objective is to maximize the minimum coverage

e Independent. In this data set, each entry (that is each fea- Over all features. In addition to the minimum coverage, we also
ture for every item) is independently setltor 0 (that is item look at the performance of the algorithms on the 2nd to 6th least
either has or does not have the feature) with probability half covered features as well. The specific goal of the diversifier is to

each. Notice that this generates a data set where, in expec-Maximize minimum coverage, but at the same time, it is desirable
tation, each item has nine features. Further, in expectation, that the coverage be substantial on other features as well. This ex-
each feature is contained in half of all the items. periment highlights that even though the specific goal of the diver-
sification algorithm is to maximize minimum coverage, it achieves
e Parity. In this data set, initially we fix a bit vector of length  substantial coverage on other features as well (particularly for fea-
18 (where each bit is set tbor 0 independently and with tures where a larger coverage is attainable without compromising
equal probability) and then for each item, we pick ar 0 on the minimum coverage achieved).

independently and with equal probability, and XOR it with Varying Budgets. We perform a series of experiments by varyin
the bit vector. Observe that this results in a very strong de- ying gets. P . pe y varying
X the available budget to the algorithms, to see if the performance of
pendence between different features, and the whole data sett . P . :
- ; . he diversification algorithm scales with larger budgets. We also
contains only two kinds of items. . .
perform experiments for low budgets to test whether the algorithm
e Dependent Mixed. This data set is generated in a manner IS able to achieve reasonable coverage on each of the features (even
very similar to parity, but in addition, after each item has ©n the sparse ones). These experiments show that the diversifica-
been generated, each of the feature bits is flipped indepen-tion algorithm performs admirably for a variety of budgets.

dently and with a small probability (set t1). This results In all our experiments, the total number of featured dsand
in a milder dependence between the item features. the number of items in each data set is around. Also, when

we plot sorted coverage, the default value of the budget is set to
e Dependent. The dependent data set is similar to the depen- 20K (which is roughly 2% of the data set), and the targets for all
dent mixed data set. The only difference is that the initial bit the features are set to the budget itself. For the plots where we
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Figure 2: The average minimum coverage achieved by various Figure 4: Experimental results for the Independent data set
algorithms over 100 real world data sets ofl M items each.

the budget reaches 4%, the Diversifier (Uniform Coverage) also
achieves optimal performance. All the other algorithms fair signif-
icantly worse, especially for smaller budgets. Notice that the other
algorithms however require a budget of at lefsK to achieve any
reasonable performance. In fact the minimum coverage achieved
by the Diversifier increases linearly with the budget thereby con-

vary budgets on the-axis, the coverage plotted on theaxis is the
minimum over all thel8 features (which is the objective function
of the diversification algorithm).

Note that the budgets are too large for individual news feeds.
However, as we noted earlier, our algorithm is useful for generat-
ing a single itemset of intermediate size that contains relevant items

for all users, from which individual personalized news feeds can be f”?g%ﬁfﬁ?ﬁ'!teytg; tr;stzl(glpci)r'g:?é) we show the coverage achieved
generated using more resource-intensive techniques. Our experi- P g 9

ments can be viewed as generating these intermediate itemsets. b)értirr]nee\r/l?sngl:: aﬁ?(;mgj 82 :Eg Irizlst d(;?;/esrgff:)?ast&r%ié;—gize si(s'
As stated in Theorem 6, our diversification algorithm achieves a \F/)ar in from O Ecy t0 4%, Throughout these plots. we see a congsis-
% — d-approximation ratio as long as the expected optimum cover- ying =70 O 9 plOLS,

is at least*2 I all . is. the mini tent trend of the Diversifier performing extremely well for the lesser
age s at least=s; . In all our Experiments, the MiNIMuUm COVer- ¢4y ereq features while the other algorithms are able to perform well

Tonly on the features that get higher coverage. In other words, these
algorithms fail to perform well at the specific task of diversifica-
tion which requires spreading out the coverage uniformly. Observe
that in the plot for the comparatively high budget of 4%, the other
algorithms also perform well for features that receive lesser cov-
erage. This is because even the optimal solution can only attain a
- coverage of about as much obtained by these algorithms. However,
5.4 Description of plots for small budgets, the diversifier significantly outperforms all other
Ouir first set of plots (Figure 2) compare the minimum coverage algorithms.

achieved by various algorithms, averaged over the 100 real data sets Now, we describe the experimental results obtained for synthet-
of 1M items each, with budgets varying from 0.1% to 8% of the ically generated data sets. The plots for the experiments described
input. Observe that the Diversifier significantly outperforms all the above performed on the independent data set are given in Figure 4.
other algorithms for any budget between 0.1% and 4%. The mini- In Figure 4 part (a), we see that the performance of the Diversi-
mum coverage achieved by the Diversifier levels off at a value be- fier rapidly improves with increasing budget while the other algo-
tween 900 and 1000 beyond a budget of 1% since there are featuresithms do not scale as well. This highlights that our algorithm is
in our dataset that occur in fewer than 1000 items (and therefore theable to quickly adapt to varying coverages across features and as-
Diversifier has already achieved an almost optimal solution). Once sign importance to features that suffer from low coverage. On the

900, out of aroundl M items. Further, since we are dealing with

n = 18 featuresJnn ~ 2.89. Note thato00 > 2461# for values

of 6 > 0.28. As we note in the experiments shortly, the perfor-
mance of the diversification algorithm is significantly better than
the theoretical guarantee.
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Figure 3: The coverage achieved on the least covered features thre real world data set by various algorithms.

other hand, the other algorithms continue to select items oblivious patrticular, does significantly better than all the other algorithms we
to previously selected items and therefore suffer from lower values implemented on the real data set. The real data set comprised of
of minimum coverage. In Figure 4 part (b), we again observe that several kinds of features with varying densities among items, hier-
the Diversifier performs well on the features with low coverage, archical dependence, exclusive dependence etc., and yet ére div
i.e. it is able to balance out the coverage along different features sifier performs really well on the coverage for all budget ranges.
and obtain a large minimum coverage, while other algorithms fail The algorithm is fairly general, extremely simple to implement,
to do so. low cost and efficient, provably approximate, and performs near-
Very similar trends are seen for the same experiments performedoptimally even at large scales. Therefore these ideas and techniques
on the parity data set Figure 5 part (a). The diversifier does signifi- may be useful in a wide range of other settings and applications.
cantly better throughout, and the contrast is particularly noticeable
as the budgets are increased. Observe that in the plot for sorted cov,
erage in the parity data set (Figure 5 part (b)), the Diversifier does 6. RELATED WORK
significantly better than all other algorithms. In fact, the Diversifier ~ Diversification has been studied in a variety of different contexts
is very close to the optimum in this case as well, and therefore per- SO we only mention some of the references here. Among them
forms much better than guaranteed by Theorem 6. All these plots Search result diversification has arguably received the most atten-
are horizontal because the data set contains only two kinds of items.tion (e.g. [11, 8, 16, 15, 14, 13, 12]). In particular, Gollapudi and
Finally, we show plots for the minimum coverage achieved for Sharma [8] adopt an axiomatic approach and specify a set of rules
the different algorithms on the dependent and dependent-mixedthat must be adhered to in any reasonable definition of diversifica-
data sets for Varying budgets (Figure 6) In these piotsi we notice tion in the context of search results. A different approach is adopted
that some of the other algorithms also perform well; in fact the ran- by Slivkinset al[16] who employ learning theoretic techniques for
domized algorithm even outperforms the Diversifier for the depen- diversification of rankings. For some recent work in diversification,
dent data set. Further, we observe that some of the fixed thresholdthe reader is referred to [15, 14].
algorithms perform well for large budgets. This is not surprising Search diversification is different from our context in a couple of
given that the features are very ngidiy dependent on each other -fundamental ways. First, the primary motivation for search result
therefore an algorithm that chooses the right threshold performs diversification is keyword disambiguation, and the intent is usually
well on all features. Of course, note that we are comparing against to provide the user with a set of result webpages such that includes
an algorithm that somehow knows this threshold value, which is at least one s/he is looking for. However, in our context, the goal
not feasible in practice. The takeaway here therefore is that the di- iS to ensure that the user is presented with a set of items that satis-
versifier loses a bit in learning what threshold to use in an online fies her cumulatively. Second, in the search architecture, one nor-
fashion, but is then able to adapt and obtain a good coverage. mally has access to all the (meta data related to) webpages stored
on disk, and for efficiency reasons, one may need to perform on-
line/streaming decisions on the documents, or quickly prune them
5.5 Summary to a candidate set; however, making irrevocable online decisions
To summarize the experiments, we have seen that the diversi-is not a necessity. This consideration makes our context a signifi-
fier performs extremely well on a wide range of parameters, and in cantly harder one.
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Figure 5: Experimental results for the Parity data set Figure 6: The coverage achieved on the least covered features
for various budgets by all algorithms on the Dependent and De-
pendent Mixed data sets.

The diversification problem has also been considered extensively
in the context of recommender systems (see e.g. [19, 18, 9]). Sev-
eral other works on diversification have been undertaken. For ex-
ample, Agrawakt al [1] propose a maximum likelihood based di-
versification objective for finding relevant documents given the cat-
egorical information of queries and documents. Other papers on
topical diversification and information retrieval include [21, 20].
Vee et al [17] consider diversification for online shopping, while
Drosou and Pitoura [5, 6] have done work on diversity over con-
tinuous data such as in the context of publish/subscribe systems.
Diversification for re-ranking documents and producing summaries
has been considered by Carbonell and Goldstein [3]. The problem
of selecting a diverse, representative set of posts in the blogospher
was considered by El-Ariret al [7]. Their approach is similar to
ours in that they model the task of selecting a representative set as
a covering problem. However, one key difference with our prob-
lem is that the entire set of blog posts is available to the algorithm 7. DISCUSSIONS
before it makes any selection, i.e. their problem is offline. In addi-  In this paper, we considered the problem of selecting a diverse
tion, they consider a linear objective function, which is submodular and representative subset from a large corpus of items. We mod-
unlike our objective function of minimum coverage. We also refer eled each item as being decorated by a set of features, and the goal
the reader to the references of these papers for further work in anywas to ensure that the selected subset of items achieved large cov-
specific context. erage on all features. We discussed various problem formulations

Significant algorithmic research has previously focusedesn representing this goal, and studied both the online and offline ver-
source allocatiorproblems, where the goal is to allocate a set of sions of the problem. Our key technical contribution was an easily
resources in a manner that maximizes rewards. Our algorithm alsoimplementable and scalable online algorithm for this problem. We
falls in this broad framework, where we ha¥#resources in the analyzed this algorithm using theoretical techniques and showed
form of the items that we can opt to select, and the reward for a setthat it achieves an approximation ratio of (roughly) 50%. We also
of selected items is given by the minimum coverage on any feature. performed wide-scale experiments on a variety of real-world and
However, while we have a single-dimensional budget and multi- synthetically generated data sets and concluded that the algorithm
dimensional profit, recent work on this problem (see [4] and refer- performs even better than its theoretical guarantees in practice, and

ences therein) has largely focused on the scenario where the profit
function is single-dimensional but the budgets are multi-dimensional.
Another related set of resource allocation problems that have a
multi-dimensional profit function are ttf&anta Claus problensee

[2] and subsequent work), where the goal is to allocate a set of
items among a set of agents so as to maximize the reward of the
least satisfied agent. However, this problem typically differs from
our problem in two ways: first, each item can be allocated to only
one agent and therefore earns rewards in only one dimension; and
second, this problem is typically considered in the offline setting
where all the items and their valuations by the agents are known to
Ghe algorithm.



also confirmed that it outperforms several natural and intuitive al- [3] Jaime G. Carbonell and Jade Goldstein. The use of mmr,

gorithms for this problem by a wide margin. diversity-based reranking for reordering documents and
In fact, our algorithm adapts well to several real-world compli- producing summaries. I8IGIR pages 335-336, 1998.
cations. For example, consider a data set thabhdrs i.e. some [4] Nikhil R. Devanur, Kamal Jain, Balasubramanian Sivan, and

features that are very sparse. Our experimental results on the sorted Christopher A. Wilkens. Near optimal online algorithms and
coverage values show that in such cases, not only is the algorithm fast approximation algorithms for resource allocation

able to obtain near-optimal minimum coverage, but also does well problems. IPACM Conference on Electronic Commerce
on all features that have low coverage. This is crucial in situations pages 29-38, 2011.

where we do not want to maximize minimum coverage only, but  [5] Marina Drosou and Evaggelia Pitoura. Diversity over
also want to ensure that the algorithm performs well with respect continuous datdEEE Data Eng. Bull.32(4):49-56, 2009.

to more relaxed notions of diversity, e.g. the coverage on the bot- 5] Marina Drosou and Evaggelia Pitoura. Search result
tom 10% of features. This was in fact the case with our real data diversification.SIGMOD Record39(1):41-47, 2010.

set, and here the diversifier algorithm performed particularly well. [7] Khalid El-Arini, Gaurav Veda, Dafna Shahaf, and Carlos
The algorithm is also extremely efficient and at each online stage, Guestrin. Turning down the noise in the blogosphere. In
it only needs time proportional to the number of features to com- KDD, pages 289298, 2009.

pute if a threshold is satisfied by the new arriving item; since it is
very efficient, we do not plot graphs with running times, but the al-
gorithm clearly scales to extremely large data sets as shown in our
experiments.

In real-world applications, it is often the case that all items are
not of identicalquality, and while we wish to select a set of items
that are diverse in terms of their feature coverage, we would also recommender systems. GHI Extended Abstractpages
like to ensure that that these selected items have high overall qual- 1097_1101,’ 2006. ) .
ity. In such situations, we may interpret the quality of items as an [10] R. Motwani and P. RaghavaRandomized Algorithms
additional feature on which we also want to meet a given quality Cambridge University Press, 1997.
target. Alternatively, we may opt to set a quality threshold on items [11] Filip Radlinski, Paul N. Bennett, Ben Carterette, and
and not select any item that does not meet this threshold irrespective ~ Thorsten Joachims. Redundancy, diversity and

[8] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic
approach for result diversification. WWW pages 381-390,
20009.

[9] Sean M. McNee, John Riedl, and Joseph A. Konstan. Being
accurate is not enough: how accuracy metrics have hurt

of the coverage it achieves on the set of features. Other applications  interdependent document relevanBeGIR Forum

may have more complicated quality requirements, and an interest- 43(2):46-52, 2009.

ing direction of future research is to investigate the impact of item [12] Rodrygo L. T. Santos, Craig Macdonald, and ladh Ounis.
quality on the diversification problem. Exploiting query reformulations for web search result

In some other situations, items cover their constituent features diversification. I'WWW pages 881-890, 2010.
to different degrees that may be representeddyerage weights [13] Rodrygo L. T. Santos, Craig Macdonald, and ladh Ounis.
(typically in the rangd0, 1]). It can be shown that the same ap- Selectively diversifying web search results GiKM, pages
proximation guarantees hold from a theoretical perspective for this 1179-1188, 2010.
more general situation by using a slightly modified algorithm (for [14] Rodrygo L. T. Santos, Craig Macdonald, and ladh Ounis.
simplicity we omit these details). Even from an experimental stand- How diverse are web search resultsBIGIR pages
point, since the algorithm does well on features that are sparsely 1187-1188, 2011.
populated, it is expected to handle data sets with weighted cover-[15] Rodrygo L. T. Santos, Craig Macdonald, and ladh Ounis.
ages without a significant degradation in performance. However, Intent-aware search result diversification SIGIR pages
further experimental work in this direction is desirable. 595-604, 2011.
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erage that we would like to achieve, but also an upper limit on cov- Gollapudi. Learning optimally diverse rankings over large
erage. Such two-sided errors can be handled by pretending to dupli- document collections. IFCML, pages 983-990, 2010.
cate each feature by adding a compliment with the corresponding [17] Erik Vee, Utkarsh Srivastava, Jayavel Shanmugasundaram,
complemented coverage target. _ Prashant Bhat, and Sihem Amer-Yahia. Efficient

Finally, in certain situations, the coverage function on a feature computation of diverse query results.|BDE, 2008.

may not be additive, i.e. the overall coverage obtained by a set of [18] Cong Yu, Laks V. S. Lakshmanan, and Sihem Amer-Yahia. It
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