arXiv:2105.12849v1 [cs.LG] 26 May 2021

CARLS: Goss-platform A synchronous Representation L earning
System

Chun-Ta Lu, Yun Zeng, Da-Cheng Juan Yicheng Fan, Zhe Li, Jan Dlabal, Yi-Ting Chen, Arjun
Gopalan, Allan Heydon, Chun-Sung Ferng, Reah Miyara, Ariel Fuxmatarg Peng, Zhen Li,
Tom Duerig, Andrew Tomkins
Google Research
Mountain View, CA
{chunta,xzeng,dacheng,yichengfan,lzhe,dlabal,yitingchemagrpheydon,csferng,reahm,afuxman,futangpeng, zhenli,
tduerig,tomkins}@google.com

ABSTRACT

Innovation on learning systems has been a key propellant ih a
vancing and scaling up state-of-the-art neural models. hist
work, we propose CARLS, a novel framework for augmenting
the capacity of existing deep learning frameworks by enabli
multiple components model trainers, knowledge makers and
knowledge banks to concertedly work together in an asynobw
nous fashion across hardware platforms. The proposed CARLS
particularly suitable for learning paradigms where modehining
bene ts from additional knowledge inferred or discoveredidng
training, such as node embeddings for graph neural netwooks
reliable pseudo labels from model predictions. We also dbsc
three learning paradigms semi-supervised learning, cioculum
learning and multimodal learning as examples that can beaded

up e ciently by CARLS. One version of CARLS has been open-
sourced and available for download at:

github.com/tensor ow/neural-structured-learning/tree/maast/research/carls

1 INTRODUCTION

During the past decade, several deep learning frameworkslL[®
36] have been made available to public and accelerating tthe a
vancement of many research domains in deep learning [16228,
Despite their successes, cutting-edge technology and gmgrap-
plications are always pushing the limits of training cap&cisup-
ported by the existing frameworks. For example, the larg&st
model [40] with 11 billion parameters has achieved statettud-
art performance on multiple NLP benchmarks, and a near-hama
score on the SuperGLUE natural language understanding henc
mark. GPT-3 [5], an auto-regressive language model with kil'5
lion parameters, achieves strong performance on many NLithe
marks without any gradient updates or ne-tuning. Most reaty,
the switch transformer [17] advanced the size of the T5 model
to 7 times, leading to a giant model speaking 102 di erent lan-
guages.

While most of the above e orts focus on training one mono-
lithic model, human brains often solve a cognition problersing
multiple pathways with multi-sensory inputs and multiple od-
els [27]. Such a multimodal framework has already shown its p
tential in boosting the performance over the existing moitbic
models ég., [23, 32, 37]) and in solving novel problems [19]. For

* These authors contributed equally.

+ Existing Training Framework Parameters

S,)
O/, Gradients

(=)
Parameters g

Input Processor Model Trainer

=~
...
Label / Graph Lookup Gradients / Activations

Nearest Neighbors /3
Embeddings;

Knowledge Knowledge el
Bank Bank ChsE

Knowledge Update

...................

Knowledge
Maker

Knowledge
Maker

Additional
Data Source

Figure 1. System Overview. CARLS employs three major
components: Model Trainer, Knowledge Maker and Knowl-
edge Bank. Models Trainers are the main jobs training and
updating model parameters, and Knowledge Makers are run-
ning in parallel to compute auxiliary information required

for gradient calculation and store the information in Knowl -
edge Bank. Note that these components can be deployed
on di erent platforms (GPUs, TPUs, etc) and communicate
with each other in an asynchronous fashion.

example, for vision-language related problems such asaligues-
tion answering [3], caption-based image retrieval [50],cavisual
common sense reasoning [51], the vision and language madali
are encoded by its own designated encoder and the two encoder
are co-trained jointly. However, implementing these muitodal
learning tasks at scale imposes unique challenges, sineectim-
putational complexity usually grows with the number of enders
trained, and the advancement of hardware alone cannot kepp u
with the fast growth of model (or data) size and complexituch a
scaling issue manifests itself in other machine learningamdigms
such as graph-based neural networks [6, 28, 47], where eaclen
in a graph is processed by a kernel that can be a simple muykita
perceptron or a complex attention model like BERT [15]. Funt-
more, the computational cost grows linearly with the sizerwgigh-
borhoods if no sampling technique is used.

http://arxiv.org/abs/2105.12849v1
https://github.com/tensorflow/neural-structured-learning/tree/master/research/carls

Technical Report'21, Google, LLC

In this work, we propose€CARLSaCross-platform Asynchronous
Representatior_earning System that addresses the challenges in
scaling up these giant model®(., multimodal learning or graph
neural networks). CARLS is able to (a) accommodate trairohg
very large models with extremely high computational compitsy
eg., graph neural networks with a graph of more than ten ot
nodes, each node encoded by a BERT kernel and (b) accelénate
training by shifting partial workload of inferring informaion re-
quired for gradient calculation from model trainers to Kmdedge
Makers deployed in CARLS.

CARLS contains three major components that operate in par-
allel: Model TraingrKnowledge Makeand Knowledge BankFig-
ure lillustrates an overview of the proposed CARLS systermd
trainers are the main training jobs with an extended functiality
to retrieve auxiliary information generated by the knowlgé mak-
ers that are usually implemented by a eet of servers or pipels.
The model trainers and knowledge makers share the inforroati
via the knowledge bank, which stores the results generated b
knowledge makers and enables e cient, asynchronous traigi
Model trainers and knowledge makers may be deployed usirig di
ferent hardware platformsgg., CPUs, GPUs or TPUs). Further-
more, model trainers and knowledge makers are communiaatin
in an asynchronous fashion, meaning they operate indepentlye
without a ecting the training speed.

The key observation to design CARLS for large-scale, e dien
learning is that the compute can be parallelized at modefelgor
logic-level) for many neural architectures; in other wordhe in-
teractions among multiple models are usually limited to afeon-
necting points such as the joint of each encoder output, betag-
gregation of neighborhood embeddings in a graph neural nestiv
By employing the knowledge banks as the interface betweeti-in
vidual modules, CARLS delegates the computation cost ofithe
dividual models from the model trainer to the knowledge mage
One potential issue of such an asynchronous mechanism is dat
freshness some knowledge makers may generate results base
slightly outdated information. In practice, we nd the impas of
such an issue are controllable and not signi cant. In summahe
main advantages of the proposed CARLS are two-fold:

Scalability : CARLS enables e cient operations to store and
lookup intermediate knowledge for training complex mod-
els. For each training step, the intermediate knowledge can
be fetched from a remote knowledge bank, rather than be-
ing recomputed across multiple training batches.

Flexibility : CARLS allows constructing and updating the
knowledge dynamically based on the current model state at
each training step, as opposed to information preprocessed
from a static input dataset or by a pretrained model.

The proposed CARLS system is validated in a number of learn-
ing tasks which are considered to be very challenging or ewen
feasible before CARLS. For example, training a graph nenes
work (GNN) stacked on top of a dense encodeg(, ResNet [21]
or Transformer [46]), where each node features are encodgd b
the encoder and aggregated by a GNN, the training time become
prohibitively expensive especially when the neighbor sigews
large. With CARLS, we are able to train a graph-regularizeaidel

whose neighbor size is 10 times larger than the largest one cu
rently proposed by the literature [25], without introducip any
slowdown in the training speed. We also demonstrate threarte

ing paradigms as examples that can be scaled up by CARLS, in-
cluding semi-supervised learning, curriculum learningydamulti-
modal learning.

The remainder of this paper is organized as follows: aftesiesv-
ing related work in Section 2, we elaborate the design of CSRL
in Section 3. In Section 4, we demonstrate the learning payad
that can be scaled up e ciently by CARLSs. Finally, we conckid
this paper in Section 5.

2 RELATED WORK

Large-scale learning systemsd., models with more than 10G pa-
rameters) are often needed in language/image modelingomec
mendation systems, or models with very large sparse feasee
input (e.g., click through rate prediction models in digital advist
ing [54, 55]). Directly relying on the design of existing dekarn-
ing libraries g4., [2, 31]) is often limited in practice and challenges
exist both in training and serving these large models.

Existing large language/image models are characterizethbir
sophisticated internal building blockeg., the self-attention mech-
anism [46] or the residual network [21]) that are often staadkup
to hundreds of layers€g., [5, 14, 38, 39]). Solely relying on the
innovations of hardware€g., GPU or TPU) can hardly keep up
with the explosion of model size. To e ciently train these nib
els, parallelisms/sparsity among the partitions of the nebdre of-
ten explored €g., [30, 35]). The mixture-of-experts (MoE) model is
an example model with sparsity that allows di erent sub-mels$
to be trained in parallel [35, 41]. Most recently, the swittfans-
former [17]is able to handle models with 1T parameters byvaad
a big MoE problem. In order to serve these large models in sdel
vices or more e ciently, the distillation technique [22] oteacher-
student networks are usually applied to compress the model.

Among industrial scale recommendation systems, the number
of unique items €g., keywords, products) can easily reach up to
billions or even trillions, which are usually represented the soft-
max/logistic output layer of a model. Since these outputday can
be regarded as nearest neighbor search in an embedding $paee
embedding for each item), a popular approach to e cient mdde
training and inference is to compress the output embeddimis
various hashing techniques [34, 42, 44, 53]. However, tluese-
pression/approximation approaches often come with thecgriof
sacri cing modeling accuracy.

There are also more recent interests in decoupling the meynor
part (eg., sparse feature embeddings for both input and output lay
ers) of a model from its structural pare@., [54]), therefore achiev-
ing e cient model training/inference, automatic model greth, as
well as e cient multi-task learning. For example, the DynagEm-
bedding system [52] employsraemory servefor serving the em-
bedding data in a model with almost unlimited sparse featsst;
The Taskology system [33] employs anference serveo facili-
tate multi-task training with consistency constraints. bhis work,
we further extend this line of research by proposing a higtdys-
tributed system with both memory and inference components.

CARLS: @oss-platform_Asynchronous Rpresentation earning_§stem

3 PROPOSED CARLS

In this section, we provide the details of the proposed CARLS
framework, which consists of three major components that-en
able asynchronous representation learning across hetenegpus
platforms:

Model Trainer : responsible for both training various mod-
els and communicating with the knowledge bank to fetch
augmented information to facilitate the training.

Knowledge Maker : responsible for generating the knowl-
edge requested by the model trainer. Speci cally, a knowl-
edge maker loads the latest checkpoint (saved by the model
trainer) to make inference on auxiliary data, or discovemne
neighborhoods from examples with close representations
learnt from the model.

Knowledge Bank : responsible for storing and refreshing
the knowledge generated by knowledge makers. A knowl-
edge bank also serves the fetch requests from model train-
ers.

Two key characteristics of CARLS are that (a) Model Trainers

Knowledge Banks, and Knowledge Makers can be operated asyn-

chronously, and (b) these components can be deployed on het-
erogeneous hardware platforms (CPUs, GPUs, TPUs, etd)eln t
following sections, we describe the features that have bé&an
plemented, and leave a wide range of scenarios that are not ye
implemented but accommodated by CARLS as a straight-lire fu
ture work.

3.1 Knowledge Maker

Knowledge makers play a critical role in extending the cajac
of a learning system. Conventionally, the model traineropess
the data and compute all the information required for calatihg
losses. In CARLS, knowledge makers are designed to dyndgnica
calculate (or discover) the knowledge that can be exploitad
model trainers for calculating the losses. Therefore, pafrtnodel
trainers' workload can be shifted to knowledge makers, wihic
helps the model trainers run faster or save capacity to acowon
date larger models or training with more data. Below we prdei
three example types of knowledge that are suitable to be pssed
or discovered by knowledge makers:

Graph structure and node embedding : knowledge mak-
ers can load parts of the model such as the node encoder of
graph neural network to update the knowledge. The graph
structure can also be dynamically updated with the similar-
ity between the computed node embeddings, as opposed to
a given static graph (Section 4.1).

Augmented labels : knowledge makers can load the whole
model to (a) make inference on the missing labels for aug-
menting the training data, or (b) clean up noisy labels for
providing a cleaner training dataset (Section 4.2).

External Knowledge : another advanced application of
CARLS is to integrate the external knowledge/memeory for
training [19, 48]. In this case, the responsibility of knowl
edge makers is to pre-compute and process the related
knowledge for enabling fast serving by the knowledge bank
(Section 4.3)

Technical Report'21, Google, LLC

Knowledge makers keep the same machine states as model
trainers by periodically loading the parameters from thetdat
checkpoints or parameter servers. This way, the inferenoesle
by the knowledge makers will be consistent with model traise
Knowledge makers can be implemented by a MapReduce [13] or
Flume [7] pipeline, or by sending remote procedure calls (RP
to a remote inference server.

3.2 Knowledge Bank

The knowledge inferred by knowledge makers are stored inWho
edge banks for fast serving model-training jobs. Dependimgthe
application type, a knowledge bank can be an external sterag
system such as Bigtable [8] or Spanner [11] or a specialideem-
bedding server [52] responsible for updating internal pareters
during back-propagation stage. Some applications may negu
knowledge banks perform certain computations, such asiestr
ing top-N nearest neighbors given a query. Note that the nuenb
of instances stored in knowledge banks can be very large {mul
millions to multi-billions). To keep the computational lahcy
constant not growing as the data size grows, the knowledge
banks are sharded and deployed in a distributed fashion [45]

Below is a list of example applications enabled by knowledge
banks:

Feature Lookup : an instance's featureg(., neighbor IDs
from a graph, or labels) are stored as a protocol bu er [1]
and keyed by the instance's unique ID. In this application,
knowledge banks can be implemented directly by external
storage systems without special treatments to store these
feature information.

Embedding Lookup and Update : in certain applications

eg., node embeddings in the graph neural network or word
embeddings in language modeling, the embeddings can
be stored in a knowledge bank and will be continuously
updated throughout the training process. To support back-
propagate the gradients with respect to the embeddings, we
leverage the DynamicEmbedding [52] (as the implementa-
tion of knowledge banks) to update the embeddings with
the gradient values.

Nearest Neighbors Lookup: e cient nearest neighbor
search in the embedding space is important for solving
large scale classi cation and retrieval tasks [20]. Unlikg-
isting learning paradigms that either take the pre-compdte
nearest neighbors as input features or search over a very
limited scope €g., within the same batch), CARLS enables
searching over the embeddings kept in the knowledge bank,
which is essentially the entire dataset both labeled and
unlabeled samples. Furthermore, using CARLS enables
nearest-neighbor search over the dataset that grows or
is updated during training. To facilitate e cient nearest
neighbors search as the dataset grows, the computation
is distributed into multiple shards and ScaNN [20] can be
applied for search space pruning and quantization.

Lazy update for asynchronous gradient upddthile data con-
sistency, isolation, and durability are delegated to thesidm of
existing storage systems [8, 11] and computation e ciencyda
parallelism can be handled by existing server designs [Sggcial

Technical Report'21, Google, LLC

treatment is still required when multiple training jobs am@tempt-
ing to update the gradients of the same embedding entry stidre
knowledge bank. In this case, simply guaranteeing atonyicitay

not be su cient since this mechanism favors the last modekttup-
dates the gradients and ignores the contribution from othapd-
els. CARLS resolves this issue by employing a lazy updaterseh
caching the results of gradient update until the next lookrggjuest
arrives, or an expiration time is reached. The update is lthen

the average of all cached gradients with possible outlietedgion.
With this lazy update mechanism, the overall training praeis
more stable compared with simple stochastic gradient desce

3.3 Model Trainer

A model trainer is typically a machine-learning model eqpipd
with a communication module to fetch the knowledge (of infer
ences) from knowledge banks. The communication module is us
ally implemented as customized operations or layers, eimgjthe
funtionalities as listed in Section 3.2. The communicatioodule
sends the request to the knowledge bank for retrieving aduiial
information discovered during training. The inputs of commi-
cation modules can come from the training datag., sample IDs
for fetching neighbor IDs), or the embedding values at a hadd
layer (for retrieving the nearest neighbors). Note that neddrain-
ers can be implemented with various platformad., TensorFlow
or Pytorch) in a distributed fashion. Special cases neecdettexen
for the communication module when the trainers are running o
TPU machines [24], which works best when the entire model ts
into the on-chip memory.

4 LEARNING PARADIGMS

In the section, we provide three learning paradigms as ex&ap
that can be scaled up e ciently by CARLS, including but noti
ited to semi-supervised learning, curriculum learning,camulti-
modal learning.

4.1 Semi-Supervised Learning

Semi-supervised learning (SSL) is a machine learning pggrad
that harnesses both labeled and unlabeled data to improvel@ho
prediction performance, and is particularly useful wherbkeled
data is limited or expensive to obtain. However, despite -

Training Images with Labels Model

e -

Image Embedding

Superviset
Loss

S
v
\I
@00

Graph

Neighbor
Lookup
Regularizer
Embedding
Knowledge

Look |
ooup Knowledge ey 2
k Bank ‘

Banl
f Neighbor Embedding

Embedding
Update

(OO0 O ¢—

Model Trainer

Knowledge Makers

Model with the
Latest Checkpoint

Unlabeled Images

Figure 2: Training a graph-regularized model at scale with
CARLS. Flow in red is added to enable graph regularization
and required only during training. The model trainer and
knowledge makers are running in parallel with a shared
knowledge bank (KB). Knowledge makers keep loading the
latest checkpoint generated by model trainers for making
inferences and update the embeddings in KB. The input pro-
cessor of the model trainer will look up training instances'
neighborhood from the KB. After retrieving the neighbor
info (e.g., neighbor IDs, edge weights), the neighbor IDs wi I
be used to lookup neighbors' embeddings from the KB.

Figure 2 illustrates a graph-regularized model trained hvit
CARLS. The training objective is to minimize the sum of the
supervised loss and the graph regularizer, which is a passvdis-
tance between the embeddings of neighboring nodes. Theheig
bourhood can be constructed o ine using existing signals.de
co-clicked image pairs [25] or images in the same board [481)
created online during training (e.g., image augmentatid2]), and
looked up from the knowledge bank in the trainer.

If the neighbor embeddings are directly computed in the trai,
the training time and the trainer memory consumption will in
crease linearly in proportional to the number of neighbor2q].
To make the graph-regularized model scalable, the embegilof
each node/image are computed by knowledge makers and upldate
to the knowledge bank in parallel with the model trainer.

Figure 3 illustrates another example of applying CARLS te en

vantages and successes brought by SSL, using abundant unla-able e cient graph operations for large-scale graph leang. In

beled data also signi cantly increases the training comation.

this example, the model is a stack of an encodegResNet or

For example, graph-based methods are one type of popular SSL Transformer) and a graph neural network (GNN). It can be very

approaches, where each node's informatiamg(, labels) can be
iteratively updated by aggregating the information from igh-
boring nodes whether they are labeled or unlabeled [6, 23jisT
means, in addition to computing or processing the labeledaga
additional computation is required to process these neigtibg
nodes. In this case, CARLS deploy a eet of knowledge makers
to process these neighboring nodes, shifting the additiooam-
putation conventionally done by the model trainer to knowdge
makers. Furthermore, CARLS eliminates redundant compaiest

(e.g., one node being a common neighbor among several other

nodes only needs to be processed once) by caching the reisults
the knowledge banks.

challenging to train such a model, especially when the si¢he
subgraph is large, without the support of CARLS.

4.2 Curriculum Learning

Curriculum learning [4] refers to a learning paradigm whetbe
challenge of a learning task gradually increases over timaeifn-
proving the model performance. The increased challengealigu
forces models to focus on learning additional informatiomat is
not well captured from the previous iterations [43]. This adigm
maps favorably to the CARLS framework where the additionmal i
formation can be stored in the knowledge bank and the knovded
makers are responsible for generating this information véed to

CARLS: @oss-platform_Asynchronous Rpresentation earning_§stem

Model Tralne\

Training —’ Input Processor Encoder —»E

Data

Graph Neighbors
Lookup .

sioqubieN jo buippaquiz

Knowledge
Bank

Embedding Lookup Knowledge
000 d s

Embedding
Update

Graph
Update

Node ' Knowledge
Features ML

Figure 3: An illustration of the training pipeline of CARLS

for a graph neural network stacked on top of a node en-
coder. The node encoder encodes the node features into em-
beddings and feed to the GNN. In the model trainer, each
training input node can look up its sub-graph and the em-
beddings of each node in the subgraph from the KB. The
knowledge makers can load the latest checkpoint to com-
pute and update the node embeddings as well as the graph
(based on the node embeddings) to the KB.

@ Input with reliable labels
Input with noisy labels
A Input without labels
More reliable labels

0000 . ;o0: D1 D2 D3
(N N N] ® A (XX] .
P input | 4 Model Trainer
|
AAAA Dz P
DOLL 4 D3A o0, Retumn inferred labels

ndinQ [spoN

Knowledge
Bank

: Label inference Model
Checkpoint

< J

Knowledge
Maker

Figure 4: An illustration of the work ow of curriculum
learning using CARLS. The labels of the input examples can
be improved by the knowledge maker (e.g., using online la-
bel mining for unreliable labels or graph agreement model
for inferring missing labels).

increase the training complexity. Fig. 4 illustrates the tkaw of
using CARLS for curriculum learning. Speci cally, we densirate
two examplesonline label miningleals with noisy labels, and the
graph agreement modgéals with missing labels for some inputs.

4.2.1 Online label miningn large scale applications of image
classi cation, the labels of each image are usually infetrigom

Technical Report'21, Google, LLC

Model Trainer

Text Encoder

Image-Text Input oncess«y Contrastive Loss
Dat?,,, ,
Embedding Image Encoder
Lookup
Knowledge
Bank
v
’ Knowledge
Maker Model

Check??]pt/

Figure 5: An illustration of the training pipeline of CARLS
for a deep image-text two-tower model. Flow in red is added
to enable lookup image/text embeddings and is required
only during training. The distributed knowledge makers
will compute the image/text embeddings and update the em-
beddings to the knowledge bank. The model trainer can look
up the embeddings from the KB instead of computing the
image/text embeddings through the image/text encoder.

a rather noisy input €g., search queries or text captions associ-
ated to an image) that are often inconsistent with each otlfeg.,
wrong or missing labels). In such cases, multiple iterasoare
often needed to alternate between i) training the model thea
noisy data and ii) re ning the model based on the latest traih
model. Such a process can be signi cantly accelerated if we ¢
do i) and ii) in parallel. In CARLS, i) can be achieved via a elod
trainer and ii) by knowledge makers, and the knowledge bank
stores the newest inferred labeled for each instance.

4.2.2 Graph Agreement Mod&hother example of curriculum
learning is the graph agreement model for semi-superviseath-

ing [43], where the labels of unknown training examples are i
ferred based on the nearest neighbors from labeled examples
where the nearest neighbors are calculated based on the embe
ding of the input (from the hidden layer of the trained modelp
CARLS, this nearest neighbors search can be done by a kngeled
maker and the inferred labels can be stored in the knowledggalb

4.3 Multimodal Learning

In addition to training a single deep model, CARLS can also be
used for multimodal learning such as training an image-téwio-
tower model [23] and the modality nets [26] that has four mdsle
for language (text data), images, audio, and categorictd.da
Figure 5 illustrates an example of a image-text deep two-¢ow
model trained with CARLS, where the image and text encoders ¢
be learned via a contrastive loss [9] that pushes the embegisli
of matched image-text pair together while pushing those afm
matched image-text pair apart. The image-text matchingresare
computed as the cosine-similarity of the image embeddingd a
the text embeddings from the corresponding encoders. Altgb

Technical Report'21, Google, LLC

when the image/text encoder goes deeper it can often achimte
ter performance [23], it is more challenging to train as theropu-
tational complexity grows signi cantly. Instead of comping the
image/text embeddings directly in the model trainer, we cati-
lize CARLS to lookup historical embeddings from the knowged
bank

In addition to reducing the computation in the trainer, CARL

can also be used to improve the model performance. As shown

in [23] that the model performance increases along with them-
ber of random negatives used in the contrastive learning.tAs

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geey Hinton. 2020.
A simple framework for contrastive learning of visual remgentations. Ininter-
national conference on machine learniAyILR, 1597 1607.

[10] Ronan Collobert, Samy Bengio, and Johnny Mariéthop220orch: a modular
machine learning software librarifechnical Report. Idiap.

[11] James C. Corbett, Je rey Dean, Michael Epstein, Andifeikes, Christopher
Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, CptistoHeiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugengafo Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagi®an Quinlan,
Rajesh Rao, Lindsay Rolig, Dale Woodford, Yasushi Saitois®Bpher Tay-
lor, Michal Szymaniak, and Ruth Wang. 2012. Spanner: Gto@kobally-
Distributed Database. I®SDI

[12] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudr, and Quoc V Le.
2019. Autoaugment: Learning augmentation strategies fotata. InProceedings

embeddings of the random negatives can be looked up from the
knowledge bank, we can easily scale up the number of random
negatives. Besides, because each encoder can be consateasd

of the IEEE/CVF Conference on Computer Vision and PattegniRec 113 123.
[13] Je rey Dean and Sanjay Ghemawat. 2004. MapReduce:liS#hpata Process-
ing on Large Clusters. I@SDI'04: Sixth Symposium on Operating System Design

independent model in the knowledge makers (by loading parts
the network from the checkpoint of the model), the image/tem-

beddings can be computed and updated to the knowledge bank in

dependently. Thus, image/text data feed to the knowledgekera
can go beyond the training image-text pairs.

5 CONCLUSION

In this paper, we proposed CARLS, a cross-platform, asymobus
learning framework that signi cantly extends the capacitf cur-
rent deep learning frameworks by enabling dynamic knowledg
sharing between model trainers and knowledge makers. The pr
posed CARLS is particularly suitable for training largeate neu-
ral models that bene t from additional knowledge inferred dlis-
covered during training, such as graph neural networks andltia
modality models. CARLS also enables existing frameworkdyto
namically learn with changes inferred or occurred duringatning,
facilitating curriculum learning to be more e cient. As a staight-
line future work, we will extend CARLS to train more varietyfo
learning models, design new APIs to streamline system setnig
provide better support for heterogeneous hardware.

REFERENCES

[1] 2016. Protocol Bu ers Language Guide.

[2] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chemdé Davis, Je rey
Dean, Matthieu Devin, Sanjay Ghemawat, Geo rey Irving, Mael Isard, et al.
2016. Tensor ow: a system for large-scale machine learnihngUSENIX Sympo-
sium on Operating Systems Design and Implementation (8DI)6. 265 283.
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Marggtchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. 2015. Vga: Visual gisesanswering. In
Proceedings of the IEEE international conference on cowigiote 2425 2433.
Yoshua Bengio, Jérdme Louradour, Ronan Collobert, asbd Weston. 2009.

3

[4

Curriculum learning. InProceedings of the 26th annual international conference

on machine learningt1 48.

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbidhred Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, &firiSastry, Amanda
Askell, et al. 2020. Language models are few-shot learnasXiv preprint
arXiv:2005.14168020).

[6] Thang D Bui, Sujith Ravi, and Vivek Ramavajjala. 2018uffdeéGraph Learning:

Training Neural Networks Using Graphs. IACM International Conference on

Web Search and Data Mining

Craig Chambers, Ashish Raniwala, Frances Perry, Stephdams, Robert R

Henry, Robert Bradshaw, and Nathan Weizenbaum. 2010. Rlawze easy, e -

cient data-parallel pipelinesACM Sigplan Notice45, 6 (2010), 363 375.

Fay Chang, Je rey Dean, Sanjay Ghemawat, Wilson C. Hsizéborah A. Wal-

lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and RoBefGruber. 2006.

Bigtable: A Distributed Storage System for Structured Déditeth USENIX Sym-

posium on Operating Systems Design and Implementatiot) (Q@218.

[7

8

Lin order to back-propagate the gradients back to the encsdersubset of the exam-
ples in a training mini-batch should still be computed thrgh the encoders in the
model trainer.

and ImplementatiarSan Francisco, CA, 137 150.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristihautanova. 2018.
BERT: Pre-training of Deep Bidirectional Transformers foanguage Under-
standing. CoRRabs/1810.04805 (2018).

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Krisflioaitanova. 2018. Bert:
Pre-training of deep bidirectional transformers for langge understanding.
arXiv preprint arXiv:1810.048@918).

[16] Andre Esteva, Alexandre Robicquet, Bharath Ramsundalpdymyr Kuleshov,
Mark DePristo, Katherine Chou, Claire Cui, Greg Corraddy&sian Thrun, and
Je Dean. 2019. A guide to deep learning in healthcalature medicin@5, 1
(2019), 24 29.

[17] William Fedus, Barret Zoph, and Noam Shazeer. 2021.tcBwvliransformers:
Scaling to Trillion Parameter Models with Simple and E ciéfSparsity. arXiv
preprint arXiv:2101.039¢2021).

[18] lan Goodfellow, Yoshua Bengio, Aaron Courville, andi¥aa Bengio. 201&eep
learning Vol. 1. MIT press Cambridge.

[19] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harleg, Danihelka, Ag-
nieszka Grabska-Barwi«ska, Sergio Gdmez Colmenarejoaiti@refenstette,
Tiago Ramalho, John Agapiou, et al. 2016. Hybrid computismg a neural
network with dynamic external memoryNature538, 7626 (2016), 471 476.

[20] Ruigi Guo, Philip Sun, Erik Lindgren, Quan Geng, Davitn&ha, Felix
Chern, and Sanjiv Kumar. 2020. Accelerating Large-Scaflerénce with
Anisotropic Vector Quantization. Innternational Conference on Machine Learn-
ing. https://arxiv.org/abs/1908.10396

[21] Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian S0452 Deep Resid-
ual Learning for Image Recognition. @omputer Vision and Pattern Recognition
(CVPR)

[22] Geo rey Hinton, Oriol Vinyals, and Je Dean. 2015. Ditihg the knowledge in
a neural network.arXiv preprint arXiv:1503.025@D15).

[23] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Kardieu Pham, Quoc V.
Le, Yunhsuan Sung, Zhen Li, and Tom Duerig. 2021. Scaling I$paV
and Vision-Language Representation Learning With Noisw{T8upervision.
arXiv:cs.CVv/2102.05918

[24] Norman P Jouppi, Cli Young, Nishant Patil, David Patien, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden réth&c, et al. 2017.
In-datacenter performance analysis of a tensor processing. In Proceedings
of the 44th annual international symposium on computeritectare 1 12.

[25] Da-Cheng Juan, Chun-Ta Lu, Zhen Li, Futang Peng, Alieksaofeev, Yi-Ting
Chen, Yaxi Gao, Tom Duerig, Andrew Tomkins, and Sujith Ra0R0. Ultra Fine-
Grained Image Semantic EmbeddingPiroceedings of the 13th International Con-
ference on Web Search and Data Minity 285.

[26] Lukasz Kaiser, Aidan N Gomez, Noam Shazeer, Ashish &aswiki Parmar,
Llion Jones, and Jakob Uszkoreit. 2017. One model to leamtall. arXiv
preprint arXiv:1706.05182017).

[27] Eric R Kandel, James H Schwartz, Thomas M Jessell, Begat of Biochem-
istry, Molecular Biophysics Thomas Jessell, Steven Siegeh, and AJ Hud-
speth. 2000Principles of neural sciend®l. 4. McGraw-hill New York.

[28] Thomas N Kipf and Max Welling. 2016. Semi-supervisexssi cation with
graph convolutional networksarXiv preprint arXiv:1609.029(016).

[29] Yann LeCun, Yoshua Bengio, and Geo rey Hinton. 2015 Deearning Nature
521 (2015), 436 444.

[30] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehaloe@, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng CI2820. Gshard:
Scaling giant models with conditional computation and autatic sharding.
arXiv preprint arXiv:2006.1666820).

[31] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smfutar, Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing(84. Scaling dis-
tributed machine learning with the parameter server.1ithf USENIX Sympo-
sium on Operating Systems Design and Implementdt@80g 14) 583 598.

CARLS: @oss-platform_Asynchronous Rpresentation earning_§stem

[32] Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, DevikRaeand Stefan Lee.
2020. 12-in-1: Multi-task vision and language represeptatearning. InPro-
ceedings of the IEEE/CVF Conference on Computer VisiottamdARscognitian
10437 10446.
Yao Lu, Séren Pirk, Jan Dlabal, Anthony Brohan, Ankites&d, Zhao Chen, Vin-
cent Casser, Anelia Angelova, and Ariel Gordon. 2020. Tasjo Utilizing Task
Relations at ScalerXiv preprint arXiv:2005.072&020).
Tharun Medini, Qixuan Huang, Yigiu Wang, Vijai Moham@Anshumali Shri-
vastava. 2019. Extreme classi cation in log memory usingmemin sketch: A
case study of amazon search with 50m produetsXiv preprint arXiv:1910.13830
(2019).
Deepak Narayanan, Aaron Harlap, Amar Phanishayeeg¥i8eshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Z&ha2019.
PipeDream: generalized pipeline parallelism for DNN trai. In Proceedings
of the 27th ACM Symposium on Operating Systems Prindifigs
PyTorch. 2018. http://pytorch.org http://pytorchrg.
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya RangGabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkilack Clark, et al.
[n. d.]. Learning Transferable Visual Models From Naturahiguage Supervi-
sion. Image2 ([n. d.]), T2.
[38] Alec Radford, Karthik Narasimhan, Tim Salimans, ary@IButskever. 2018. Im-
proving language understanding by generative pre-traigin2018).
[39] Alec Radford, Je rey Wu, Rewon Child, David Luan, DaAmodei, and llya
Sutskever. 2019. Language models are unsupervised naklltigarners OpenAl
blog1, 8 (2019), 9.
Colin Rael, Noam Shazeer, Adam Roberts, Katherine, 8karan Narang,
Michael Matena, Yangi Zhou, Wei Li, and Peter J. Liu. 2020. pldEx
ing the Limits of Transfer Learning with a Unied Text-to-De& Trans-
former. Journal of Machine Learning Resear2h, 140 (2020), 167.
http://jmir.org/papers/v21/20-074.html
Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziaradg Davis, Quoc Le, Ge-
o rey Hinton, and Je Dean. 2017. Outrageously large neurstworks: The
sparsely-gated mixture-of-experts layenXiv preprint arXiv:1701.065@017).
Liuyihan Song, Pan Pan, Kang Zhao, Hao Yang, Yiming Chémgya Zhang,
Yinghui Xu, and Rong Jin. 2020. Large-Scale Training Sy$terh00-Million
Classi cation at Alibaba. IrProceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mi2i&ig9 2930.
Otilia Stretcu, Krishnamurthy Viswanathan, Dana Mdwvitz-Attias, Anthony
Platanios, Sujith Ravi, and Andrew Tomkins. 2019. Grapleagrent models for

[33]

[34]

[35]

[36]
[37]

[40]

[41]

[42]

[43]

Technical Report'21, Google, LLC

semi-supervised learning. (2019).

[44] Yukihiro Tagami. 2017. Annexml: Approximate nearestghbor search for ex-
treme multi-label classi cation. IfProceedings of the 23rd ACM SIGKDD interna-
tional conference on knowledge discovery and data mi#bagi64.

[45] Maarten van Steen and Andrew S. Tanenbaum. 2@igtributed System<Cre-
ateSpace Independent Publishing Platform.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Usikad. lion Jones,
Aidan N Gomez, Lukasz Kaiser, and lllia Polosukhin. 201Terfion is All you
Need. InAdvances in Neural Information Processing Systems .(B#98)5008.

[47] Petar Velifkovi¢, Guillem Cucurull, Arantxa Casanp@ariana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networkarXiv preprint
arXiv:1710.109@3017).

[48] Jason Weston, Sumit Chopra, and Antoine Bordes. 2014mdfy networks.

arXiv preprint arXiv:1410.391(8014).

Rex Ying, Ruining He, Kaifeng Chen, Pong EksombatdNdliam L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural netsdor web-scale

recommender systems. IRroceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mifing 983.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockarfen 2014. From image

descriptions to visual denotations: New similarity metsifor semantic inference

over event descriptionsTransactions of the Association for Computational Lin-

guistics2 (2014), 67 78.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Cl2919. From recogni-

tion to cognition: Visual commonsense reasoningAroceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recoghifia® 6731.

[52] Yun Zeng, Sigi Zuo, and Dongcai Shen. 2020. Dynamickdibg: Extend-
ing TensorFlow for Colossal-Scale ApplicatiosXiv preprint arXiv:2004.08366
(2020).

[53] Xingcheng Zhang, Lei Yang, Junjie Yan, and Dahua Lif82@ccelerated train-

ing for massive classi cation via dynamic class selectiém Proceedings of the

AAAI Conference on Arti cial Intelligenceol. 32.

Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei QiannBlai Jia, and Ping Li.

2019. AlBox: CTR prediction model training on a single nddeProceedings of

the 28th ACM International Conference on Information araadge Manage-

ment 319 328.

Guorui Zhou, Xiaogiang Zhu, Chenru Song, Ying Fan, HamZXiao Ma,

Yanghui Yan, Jungi Jin, Han Li, and Kun Gai. 2018. Deep isteretwork for

click-through rate prediction. IlProceedings of the 24th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery & Data MihD&P 1068.

[49]

[50]

[51]

[54]

[55]

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed CARLS
	3.1 Knowledge Maker
	3.2 Knowledge Bank
	3.3 Model Trainer

	4 Learning Paradigms
	4.1 Semi-Supervised Learning
	4.2 Curriculum Learning
	4.3 Multimodal Learning

	5 Conclusion

