
ar
X

iv
:2

10
5.

12
84

9v
1

 [c
s.

LG
]

26
 M

ay
 2

02
1

CARLS: Cross-platform A synchronous Representation L earning
System

Chun-Ta Lu� , Yun Zeng� , Da-Cheng Juan� , Yicheng Fan, Zhe Li, Jan Dlabal, Yi-Ting Chen, Arjun
Gopalan, Allan Heydon, Chun-Sung Ferng, Reah Miyara, Ariel Fuxman, Futang Peng, Zhen Li,

Tom Duerig, Andrew Tomkins
Google Research

Mountain View, CA
{chunta,xzeng,dacheng,yichengfan,lzhe,dlabal,yitingchen,arjung,aheydon,csferng,reahm,afuxman,futangpeng,zhenli,

tduerig,tomkins}@google.com

ABSTRACT
Innovation on learning systems has been a key propellant in ad-
vancing and scaling up state-of-the-art neural models. In this
work, we propose CARLS, a novel framework for augmenting
the capacity of existing deep learning frameworks by enabling
multiple components�model trainers, knowledge makers and
knowledge banks�to concertedly work together in an asynchro-
nous fashion across hardware platforms. The proposed CARLSis
particularly suitable for learning paradigms where model training
bene�ts from additional knowledge inferred or discovered during
training, such as node embeddings for graph neural networksor
reliable pseudo labels from model predictions. We also describe
three learning paradigms�semi-supervised learning, curriculum
learning and multimodal learning�as examples that can be scaled
up e�ciently by CARLS. One version of CARLS has been open-
sourced and available for download at:
github.com/tensor�ow/neural-structured-learning/tree/master/research/carls.

1 INTRODUCTION
During the past decade, several deep learning frameworks [2, 10,
36] have been made available to public and accelerating the ad-
vancement of many research domains in deep learning [16, 18,29].
Despite their successes, cutting-edge technology and emerging ap-
plications are always pushing the limits of training capacity sup-
ported by the existing frameworks. For example, the largestT5
model [40] with 11 billion parameters has achieved state-of-the-
art performance on multiple NLP benchmarks, and a near-human
score on the SuperGLUE natural language understanding bench-
mark. GPT-3 [5], an auto-regressive language model with 175bil-
lion parameters, achieves strong performance on many NLP bench-
marks without any gradient updates or �ne-tuning. Most recently,
the switch transformer [17] advanced the size of the T5 model
to 7� times, leading to a giant model speaking 102 di�erent lan-
guages.

While most of the above e�orts focus on training one mono-
lithic model, human brains often solve a cognition problem using
multiple pathways with multi-sensory inputs and multiple mod-
els [27]. Such a multimodal framework has already shown its po-
tential in boosting the performance over the existing monolithic
models (e.g., [23, 32, 37]) and in solving novel problems [19]. For

* These authors contributed equally.

Knowledge
 Bank

Input ProcessorInput Processor Model TrainerModel Trainer

Knowledge
Maker

Label / Graph Lookup

Nearest Neighbors /

Knowledge Update

 Gradients / Activations

Existing Training Framework Parameters

Parameters Gradients

Embeddings

Training
Data

Model
Checkpoint

Additional
Data Source

Knowledge
 Bank

Knowledge
Maker

Figure 1: System Overview. CARLS employs three major
components: Model Trainer, Knowledge Maker and Knowl-
edge Bank. Models Trainers are the main jobs training and
updating model parameters, and Knowledge Makers are run-
ning in parallel to compute auxiliary information required
for gradient calculation and store the information in Knowl -
edge Bank. Note that these components can be deployed
on di�erent platforms (GPUs, TPUs, etc) and communicate
with each other in an asynchronous fashion.

example, for vision-language related problems such as visual ques-
tion answering [3], caption-based image retrieval [50], and visual
common sense reasoning [51], the vision and language modalities
are encoded by its own designated encoder and the two encoders
are co-trained jointly. However, implementing these multimodal
learning tasks at scale imposes unique challenges, since the com-
putational complexity usually grows with the number of encoders
trained, and the advancement of hardware alone cannot keep up
with the fast growth of model (or data) size and complexity. Such a
scaling issue manifests itself in other machine learning paradigms
such as graph-based neural networks [6, 28, 47], where each node
in a graph is processed by a kernel that can be a simple multilayer
perceptron or a complex attention model like BERT [15]. Further-
more, the computational cost grows linearly with the size ofneigh-
borhoods if no sampling technique is used.

http://arxiv.org/abs/2105.12849v1
https://github.com/tensorflow/neural-structured-learning/tree/master/research/carls

Technical Report'21, Google, LLC

In this work, we proposeCARLS: aCross-platform,Asynchronous
RepresentationLearningSystem that addresses the challenges in
scaling up these �giant� models (e.g., multimodal learning or graph
neural networks). CARLS is able to (a) accommodate trainingof
very large models with extremely high computational complexity�
e.g., graph neural networks with a graph of more than ten billion
nodes, each node encoded by a BERT kernel�and (b) acceleratethe
training by shifting partial workload of inferring information re-
quired for gradient calculation from model trainers to �Knowledge
Makers� deployed in CARLS.

CARLS contains three major components that operate in par-
allel: Model Trainer, Knowledge Makerand Knowledge Bank. Fig-
ure 1 illustrates an overview of the proposed CARLS system. Model
trainers are the main training jobs with an extended functionality
to retrieve auxiliary information generated by the knowledge mak-
ers that are usually implemented by a �eet of servers or pipelines.
The model trainers and knowledge makers share the information
via the knowledge bank, which stores the results generated by
knowledge makers and enables e�cient, asynchronous training.
Model trainers and knowledge makers may be deployed using dif-
ferent hardware platforms (e.g., CPUs, GPUs or TPUs). Further-
more, model trainers and knowledge makers are communicating
in an asynchronous fashion, meaning they operate independently
without a�ecting the training speed.

The key observation to design CARLS for large-scale, e�cient
learning is that the compute can be parallelized at model-level (or
logic-level) for many neural architectures; in other words, the in-
teractions among multiple models are usually limited to a few �con-
necting points� such as the joint of each encoder output, or the ag-
gregation of neighborhood embeddings in a graph neural network.
By employing the knowledge banks as the interface between indi-
vidual modules, CARLS delegates the computation cost of thein-
dividual models from the model trainer to the knowledge makers.
One potential issue of such an asynchronous mechanism is data
freshness�some knowledge makers may generate results based on
slightly outdated information. In practice, we �nd the impacts of
such an issue are controllable and not signi�cant. In summary, the
main advantages of the proposed CARLS are two-fold:

� Scalability : CARLS enables e�cient operations to store and
lookup intermediate knowledge for training complex mod-
els. For each training step, the intermediate knowledge can
be fetched from a remote knowledge bank, rather than be-
ing recomputed across multiple training batches.

� Flexibility : CARLS allows constructing and updating the
knowledge dynamically based on the current model state at
each training step, as opposed to information preprocessed
from a static input dataset or by a pretrained model.

The proposed CARLS system is validated in a number of learn-
ing tasks which are considered to be very challenging or evenin-
feasible before CARLS. For example, training a graph neuralnet-
work (GNN) stacked on top of a dense encoder (e.g., ResNet [21]
or Transformer [46]), where each node features are encoded by
the encoder and aggregated by a GNN, the training time becomes
prohibitively expensive especially when the neighbor sizegrows
large. With CARLS, we are able to train a graph-regularized model

whose neighbor size is 10 times larger than the largest one cur-
rently proposed by the literature [25], without introducing any
slowdown in the training speed. We also demonstrate three learn-
ing paradigms as examples that can be scaled up by CARLS, in-
cluding semi-supervised learning, curriculum learning, and multi-
modal learning.

The remainder of this paper is organized as follows: after review-
ing related work in Section 2, we elaborate the design of CARLS
in Section 3. In Section 4, we demonstrate the learning paradigms
that can be scaled up e�ciently by CARLs. Finally, we conclude
this paper in Section 5.

2 RELATED WORK
Large-scale learning systems (e.g., models with more than 10G pa-
rameters) are often needed in language/image modeling, recom-
mendation systems, or models with very large sparse featureset
input (e.g., click through rate prediction models in digital advertis-
ing [54, 55]). Directly relying on the design of existing deep learn-
ing libraries (e.g., [2, 31]) is often limited in practice and challenges
exist both in training and serving these large models.

Existing large language/image models are characterized bytheir
sophisticated internal building blocks (e.g., the self-attention mech-
anism [46] or the residual network [21]) that are often stacked up
to hundreds of layers (e.g., [5, 14, 38, 39]). Solely relying on the
innovations of hardware (e.g., GPU or TPU) can hardly keep up
with the explosion of model size. To e�ciently train these mod-
els, parallelisms/sparsity among the partitions of the model are of-
ten explored (e.g., [30, 35]). The mixture-of-experts (MoE) model is
an example model with sparsity that allows di�erent sub-models
to be trained in parallel [35, 41]. Most recently, the switchtrans-
former [17] is able to handle models with 1T parameters by solving
a big MoE problem. In order to serve these large models in small de-
vices or more e�ciently, the distillation technique [22] orteacher-
student networks are usually applied to compress the model.

Among industrial scale recommendation systems, the number
of unique items (e.g., keywords, products) can easily reach up to
billions or even trillions, which are usually represented as the soft-
max/logistic output layer of a model. Since these output layers can
be regarded as nearest neighbor search in an embedding space(one
embedding for each item), a popular approach to e�cient model
training and inference is to compress the output embeddingsvia
various hashing techniques [34, 42, 44, 53]. However, thesecom-
pression/approximation approaches often come with the price of
sacri�cing modeling accuracy.

There are also more recent interests in decoupling the memory
part (e.g., sparse feature embeddings for both input and output lay-
ers) of a model from its structural part (e.g., [54]), therefore achiev-
ing e�cient model training/inference, automatic model growth, as
well as e�cient multi-task learning. For example, the DynamicEm-
bedding system [52] employs amemory serverfor serving the em-
bedding data in a model with almost unlimited sparse featureset;
The Taskology system [33] employs aninference serverto facili-
tate multi-task training with consistency constraints. Inthis work,
we further extend this line of research by proposing a highlydis-
tributed system with both memory and inference components.

CARLS: Cross-platform Asynchronous Representation Learning System Technical Report'21, Google, LLC

3 PROPOSED CARLS
In this section, we provide the details of the proposed CARLS
framework, which consists of three major components that en-
able asynchronous representation learning across heterogeneous
platforms:

� Model Trainer : responsible for both training various mod-
els and communicating with the knowledge bank to fetch
augmented information to facilitate the training.

� Knowledge Maker : responsible for generating the knowl-
edge requested by the model trainer. Speci�cally, a knowl-
edge maker loads the latest checkpoint (saved by the model
trainer) to make inference on auxiliary data, or discover new
neighborhoods from examples with close representations
learnt from the model.

� Knowledge Bank : responsible for storing and refreshing
the knowledge generated by knowledge makers. A knowl-
edge bank also serves the fetch requests from model train-
ers.

Two key characteristics of CARLS are that (a) Model Trainers,
Knowledge Banks, and Knowledge Makers can be operated asyn-
chronously, and (b) these components can be deployed on het-
erogeneous hardware platforms (CPUs, GPUs, TPUs, etc). In the
following sections, we describe the features that have beenim-
plemented, and leave a wide range of scenarios that are not yet
implemented but accommodated by CARLS as a straight-line fu-
ture work.

3.1 Knowledge Maker
Knowledge makers play a critical role in extending the capacity
of a learning system. Conventionally, the model trainers process
the data and compute all the information required for calculating
losses. In CARLS, knowledge makers are designed to dynamically
calculate (or discover) the knowledge that can be exploitedby
model trainers for calculating the losses. Therefore, partof model
trainers' workload can be shifted to knowledge makers, which
helps the model trainers run faster or save capacity to accommo-
date larger models or training with more data. Below we provide
three example types of knowledge that are suitable to be processed
or discovered by knowledge makers:

� Graph structure and node embedding : knowledge mak-
ers can load parts of the model�such as the node encoder of
graph neural network�to update the knowledge. The graph
structure can also be dynamically updated with the similar-
ity between the computed node embeddings, as opposed to
a given static graph (Section 4.1).

� Augmented labels : knowledge makers can load the whole
model to (a) make inference on the missing labels for aug-
menting the training data, or (b) clean up noisy labels for
providing a cleaner training dataset (Section 4.2).

� External Knowledge : another advanced application of
CARLS is to integrate the external knowledge/memeory for
training [19, 48]. In this case, the responsibility of knowl-
edge makers is to pre-compute and process the related
knowledge for enabling fast serving by the knowledge bank
(Section 4.3)

Knowledge makers keep the same machine states as model
trainers by periodically loading the parameters from the latest
checkpoints or parameter servers. This way, the inferencesmade
by the knowledge makers will be consistent with model trainers.
Knowledge makers can be implemented by a MapReduce [13] or
Flume [7] pipeline, or by sending remote procedure calls (RPCs)
to a remote inference server.

3.2 Knowledge Bank
The knowledge inferred by knowledge makers are stored in knowl-
edge banks for fast serving model-training jobs. Dependingon the
application type, a knowledge bank can be an external storage
system�such as Bigtable [8] or Spanner [11]�or a specialized em-
bedding server [52] responsible for updating internal parameters
during back-propagation stage. Some applications may require
knowledge banks perform certain computations, such as retriev-
ing top-N nearest neighbors given a query. Note that the number
of instances stored in knowledge banks can be very large (multi-
millions to multi-billions). To keep the computational latency
constant�not growing as the data size grows, the knowledge
banks are sharded and deployed in a distributed fashion [45].

Below is a list of example applications enabled by knowledge
banks:

� Feature Lookup : an instance's features (e.g., neighbor IDs
from a graph, or labels) are stored as a protocol bu�er [1]
and keyed by the instance's unique ID. In this application,
knowledge banks can be implemented directly by external
storage systems without special treatments to store these
feature information.

� Embedding Lookup and Update : in certain applications�
e.g., node embeddings in the graph neural network or word
embeddings in language modeling, the embeddings can
be stored in a knowledge bank and will be continuously
updated throughout the training process. To support back-
propagate the gradients with respect to the embeddings, we
leverage the DynamicEmbedding [52] (as the implementa-
tion of knowledge banks) to update the embeddings with
the gradient values.

� Nearest Neighbors Lookup : e�cient nearest neighbor
search in the embedding space is important for solving
large scale classi�cation and retrieval tasks [20]. Unlikeex-
isting learning paradigms that either take the pre-computed
nearest neighbors as input features or search over a very
limited scope (e.g., within the same batch), CARLS enables
searching over the embeddings kept in the knowledge bank,
which is essentially the entire dataset�both labeled and
unlabeled samples. Furthermore, using CARLS enables
nearest-neighbor search over the dataset that grows or
is updated during training. To facilitate e�cient nearest
neighbors search as the dataset grows, the computation
is distributed into multiple shards and ScaNN [20] can be
applied for search space pruning and quantization.

Lazy update for asynchronous gradient update.While data con-
sistency, isolation, and durability are delegated to the design of
existing storage systems [8, 11] and computation e�ciency and
parallelism can be handled by existing server designs [52],special

Technical Report'21, Google, LLC

treatment is still required when multiple training jobs areattempt-
ing to update the gradients of the same embedding entry stored in
knowledge bank. In this case, simply guaranteeing atomicity may
not be su�cient since this mechanism favors the last model that up-
dates the gradients and ignores the contribution from othermod-
els. CARLS resolves this issue by employing a lazy update scheme:
caching the results of gradient update until the next lookuprequest
arrives, or an expiration time is reached. The update is based on
the average of all cached gradients with possible outlier detection.
With this lazy update mechanism, the overall training process is
more stable compared with simple stochastic gradient descent.

3.3 Model Trainer
A model trainer is typically a machine-learning model equipped
with a communication module to fetch the knowledge (of infer-
ences) from knowledge banks. The communication module is usu-
ally implemented as customized operations or layers, enabling the
funtionalities as listed in Section 3.2. The communicationmodule
sends the request to the knowledge bank for retrieving additional
information discovered during training. The inputs of communi-
cation modules can come from the training data (e.g., sample IDs
for fetching neighbor IDs), or the embedding values at a hidden
layer (for retrieving the nearest neighbors). Note that model train-
ers can be implemented with various platforms (e.g., TensorFlow
or Pytorch) in a distributed fashion. Special cases need to be taken
for the communication module when the trainers are running on
TPU machines [24], which works best when the entire model �ts
into the on-chip memory.

4 LEARNING PARADIGMS
In the section, we provide three learning paradigms as examples
that can be scaled up e�ciently by CARLS, including but not lim-
ited to semi-supervised learning, curriculum learning, and multi-
modal learning.

4.1 Semi-Supervised Learning
Semi-supervised learning (SSL) is a machine learning paradigm
that harnesses both labeled and unlabeled data to improve model
prediction performance, and is particularly useful when labeled
data is limited or expensive to obtain. However, despite thead-
vantages and successes brought by SSL, using abundant unla-
beled data also signi�cantly increases the training computation.
For example, graph-based methods are one type of popular SSL
approaches, where each node's information (e.g., labels) can be
iteratively updated by aggregating the information from neigh-
boring nodes whether they are labeled or unlabeled [6, 25]. This
means, in addition to computing or processing the labeled data,
additional computation is required to process these neighboring
nodes. In this case, CARLS deploy a �eet of knowledge makers
to process these neighboring nodes, shifting the additional com-
putation conventionally done by the model trainer to knowledge
makers. Furthermore, CARLS eliminates redundant computations
(e.g., one node being a common neighbor among several other
nodes only needs to be processed once) by caching the resultsin
the knowledge banks.

Input Processor

Model Trainer

Knowledge Makers

Training Images with Labels Model Image Embedding

Supervised
 Loss

Neighbor Embedding

 Graph
Regularizer

Embedding
 Lookup

Neighbor
 Lookup

Embedding
 Update

Unlabeled Images

 Model with the
Latest Checkpoint

Knowledge
 Bank

Knowledge
 Bank

Figure 2: Training a graph-regularized model at scale with
CARLS. Flow in red is added to enable graph regularization
and required only during training. The model trainer and
knowledge makers are running in parallel with a shared
knowledge bank (KB). Knowledge makers keep loading the
latest checkpoint generated by model trainers for making
inferences and update the embeddings in KB. The input pro-
cessor of the model trainer will look up training instances'
neighborhood from the KB. After retrieving the neighbor
info (e.g., neighbor IDs, edge weights), the neighbor IDs wi ll
be used to lookup neighbors' embeddings from the KB.

Figure 2 illustrates a graph-regularized model trained with
CARLS. The training objective is to minimize the sum of the
supervised loss and the graph regularizer, which is a pairwise dis-
tance between the embeddings of neighboring nodes. The neigh-
bourhood can be constructed o�ine using existing signals (e.g.,
co-clicked image pairs [25] or images in the same board [49]), or
created online during training (e.g., image augmentation [12]), and
looked up from the knowledge bank in the trainer.

If the neighbor embeddings are directly computed in the trainer,
the training time and the trainer memory consumption will in-
crease linearly in proportional to the number of neighbors [25].
To make the graph-regularized model scalable, the embeddings of
each node/image are computed by knowledge makers and updated
to the knowledge bank in parallel with the model trainer.

Figure 3 illustrates another example of applying CARLS to en-
able e�cient graph operations for large-scale graph learning. In
this example, the model is a stack of an encoder (e.g.ResNet or
Transformer) and a graph neural network (GNN). It can be very
challenging to train such a model, especially when the size of the
subgraph is large, without the support of CARLS.

4.2 Curriculum Learning
Curriculum learning [4] refers to a learning paradigm wherethe
challenge of a learning task gradually increases over time for im-
proving the model performance. The increased challenge usually
forces models to focus on learning additional information that is
not well captured from the previous iterations [43]. This paradigm
maps favorably to the CARLS framework where the additional in-
formation can be stored in the knowledge bank and the knowledge
makers are responsible for generating this information required to

CARLS: Cross-platform Asynchronous Representation Learning System Technical Report'21, Google, LLC

E
m

bedding of N
eighbors

Input Processor Encoder

Graph Neighbors
Lookup

Embedding Lookup

Knowledge
Maker

Graph
Update Embedding

Update

Model Trainer

Knowledge
 Bank

Knowledge
 Bank

Training
Data

Node
Features

Figure 3: An illustration of the training pipeline of CARLS
for a graph neural network stacked on top of a node en-
coder. The node encoder encodes the node features into em-
beddings and feed to the GNN. In the model trainer, each
training input node can look up its sub-graph and the em-
beddings of each node in the subgraph from the KB. The
knowledge makers can load the latest checkpoint to com-
pute and update the node embeddings as well as the graph
(based on the node embeddings) to the KB.

Input Processor

M
odel O

utput

Knowledge
Maker

Input with reliable labels

Input with noisy labels

Input without labels

Return inferred labels

Label inference

More reliable labels

Model Trainer

D2

D1 D2 D3

D3
D2

D3

D1 D2 D3

Knowledge
 Bank

Model
Checkpoint

Figure 4: An illustration of the work�ow of curriculum
learning using CARLS. The labels of the input examples can
be improved by the knowledge maker (e.g., using online la-
bel mining for unreliable labels or graph agreement model
for inferring missing labels).

increase the training complexity. Fig. 4 illustrates the work�ow of
using CARLS for curriculum learning. Speci�cally, we demonstrate
two examples:online label miningdeals with noisy labels, and the
graph agreement modeldeals with missing labels for some inputs.

4.2.1 Online label mining.In large scale applications of image
classi�cation, the labels of each image are usually inferred from

Knowledge
Maker

Text Encoder

Contrastive Loss

Image EncoderEmbedding
Lookup

Model Trainer

Knowledge
 Bank

Image-Text
Data

Model
Checkpoint

Input Processor

Figure 5: An illustration of the training pipeline of CARLS
for a deep image-text two-tower model. Flow in red is added
to enable lookup image/text embeddings and is required
only during training. The distributed knowledge makers
will compute the image/text embeddings and update the em-
beddings to the knowledge bank. The model trainer can look
up the embeddings from the KB instead of computing the
image/text embeddings through the image/text encoder.

a rather noisy input (e.g., search queries or text captions associ-
ated to an image) that are often inconsistent with each other(e.g.,
wrong or missing labels). In such cases, multiple iterations are
often needed to alternate between i) training the model based on
noisy data and ii) re�ning the model based on the latest trained
model. Such a process can be signi�cantly accelerated if we can
do i) and ii) in parallel. In CARLS, i) can be achieved via a model
trainer and ii) by knowledge makers, and the knowledge bank
stores the newest inferred labeled for each instance.

4.2.2 Graph Agreement Model.Another example of curriculum
learning is the graph agreement model for semi-supervised learn-
ing [43], where the labels of unknown training examples are in-
ferred based on the nearest neighbors from labeled examples,
where the nearest neighbors are calculated based on the embed-
ding of the input (from the hidden layer of the trained model). In
CARLS, this nearest neighbors search can be done by a knowledge
maker and the inferred labels can be stored in the knowledge bank.

4.3 Multimodal Learning
In addition to training a single deep model, CARLS can also be
used for multimodal learning such as training an image-texttwo-
tower model [23] and the modality nets [26] that has four models
for language (text data), images, audio, and categorical data.

Figure 5 illustrates an example of a image-text deep two-tower
model trained with CARLS, where the image and text encoders can
be learned via a contrastive loss [9] that pushes the embeddings
of matched image-text pair together while pushing those of non-
matched image-text pair apart. The image-text matching scores are
computed as the cosine-similarity of the image embeddings and
the text embeddings from the corresponding encoders. Although

Technical Report'21, Google, LLC

when the image/text encoder goes deeper it can often achievebet-
ter performance [23], it is more challenging to train as the compu-
tational complexity grows signi�cantly. Instead of computing the
image/text embeddings directly in the model trainer, we canuti-
lize CARLS to lookup historical embeddings from the knowledge
bank1.

In addition to reducing the computation in the trainer, CARLS
can also be used to improve the model performance. As shown
in [23] that the model performance increases along with the num-
ber of random negatives used in the contrastive learning. Asthe
embeddings of the random negatives can be looked up from the
knowledge bank, we can easily scale up the number of random
negatives. Besides, because each encoder can be consideredas an
independent model in the knowledge makers (by loading partsof
the network from the checkpoint of the model), the image/text em-
beddings can be computed and updated to the knowledge bank in-
dependently. Thus, image/text data feed to the knowledge makers
can go beyond the training image-text pairs.

5 CONCLUSION
In this paper, we proposed CARLS, a cross-platform, asynchronous
learning framework that signi�cantly extends the capacityof cur-
rent deep learning frameworks by enabling dynamic knowledge
sharing between model trainers and knowledge makers. The pro-
posed CARLS is particularly suitable for training large-scale neu-
ral models that bene�t from additional knowledge inferred or dis-
covered during training, such as graph neural networks and multi-
modality models. CARLS also enables existing frameworks tody-
namically learn with changes inferred or occurred during training,
facilitating curriculum learning to be more e�cient. As a straight-
line future work, we will extend CARLS to train more variety of
learning models, design new APIs to streamline system setupand
provide better support for heterogeneous hardware.

REFERENCES
[1] 2016. Protocol Bu�ers Language Guide.
[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey

Dean, Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, et al.
2016. Tensor�ow: a system for large-scale machine learning.. InUSENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), Vol. 16. 265�283.

[3] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. 2015. Vqa: Visual question answering. In
Proceedings of the IEEE international conference on computer vision. 2425�2433.

[4] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. InProceedings of the 26th annual international conference
on machine learning. 41�48.

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners.arXiv preprint
arXiv:2005.14165(2020).

[6] Thang D Bui, Sujith Ravi, and Vivek Ramavajjala. 2018. Neural Graph Learning:
Training Neural Networks Using Graphs. InACM International Conference on
Web Search and Data Mining.

[7] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R
Henry, Robert Bradshaw, and Nathan Weizenbaum. 2010. FlumeJava: easy, e�-
cient data-parallel pipelines.ACM Sigplan Notices45, 6 (2010), 363�375.

[8] Fay Chang, Je�rey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2006.
Bigtable: A Distributed Storage System for Structured Data. In 7th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI). 205�218.

1In order to back-propagate the gradients back to the encoders, a subset of the exam-
ples in a training mini-batch should still be computed through the encoders in the
model trainer.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geo�rey Hinton. 2020.
A simple framework for contrastive learning of visual representations. InInter-
national conference on machine learning. PMLR, 1597�1607.

[10] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. 2002. Torch: a modular
machine learning software library. Technical Report. Idiap.

[11] James C. Corbett, Je�rey Dean, Michael Epstein, AndrewFikes, Christopher
Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle,Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Dale Woodford, Yasushi Saito, Christopher Tay-
lor, Michal Szymaniak, and Ruth Wang. 2012. Spanner: Google's Globally-
Distributed Database. InOSDI.

[12] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.
2019. Autoaugment: Learning augmentation strategies fromdata. InProceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 113�123.

[13] Je�rey Dean and Sanjay Ghemawat. 2004. MapReduce: Simpli�ed Data Process-
ing on Large Clusters. InOSDI'04: Sixth Symposium on Operating System Design
and Implementation. San Francisco, CA, 137�150.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and KristinaToutanova. 2018.
BERT: Pre-training of Deep Bidirectional Transformers forLanguage Under-
standing.CoRRabs/1810.04805 (2018).

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and KristinaToutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805(2018).

[16] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov,
Mark DePristo, Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun, and
Je� Dean. 2019. A guide to deep learning in healthcare.Nature medicine25, 1
(2019), 24�29.

[17] William Fedus, Barret Zoph, and Noam Shazeer. 2021. Switch Transformers:
Scaling to Trillion Parameter Models with Simple and E�cient Sparsity. arXiv
preprint arXiv:2101.03961(2021).

[18] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016.Deep
learning. Vol. 1. MIT press Cambridge.

[19] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley,Ivo Danihelka, Ag-
nieszka Grabska-Barwi«ska, Sergio Gómez Colmenarejo, Edward Grefenstette,
Tiago Ramalho, John Agapiou, et al. 2016. Hybrid computing using a neural
network with dynamic external memory.Nature538, 7626 (2016), 471�476.

[20] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix
Chern, and Sanjiv Kumar. 2020. Accelerating Large-Scale Inference with
Anisotropic Vector Quantization. InInternational Conference on Machine Learn-
ing. https://arxiv.org/abs/1908.10396

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Resid-
ual Learning for Image Recognition. InComputer Vision and Pattern Recognition
(CVPR).

[22] Geo�rey Hinton, Oriol Vinyals, and Je� Dean. 2015. Distilling the knowledge in
a neural network.arXiv preprint arXiv:1503.02531(2015).

[23] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V.
Le, Yunhsuan Sung, Zhen Li, and Tom Duerig. 2021. Scaling Up Visual
and Vision-Language Representation Learning With Noisy Text Supervision.
arXiv:cs.CV/2102.05918

[24] Norman P Jouppi, Cli� Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processingunit. In Proceedings
of the 44th annual international symposium on computer architecture. 1�12.

[25] Da-Cheng Juan, Chun-Ta Lu, Zhen Li, Futang Peng, Aleksei Timofeev, Yi-Ting
Chen, Yaxi Gao, Tom Duerig, Andrew Tomkins, and Sujith Ravi.2020. Ultra Fine-
Grained Image Semantic Embedding. InProceedings of the 13th International Con-
ference on Web Search and Data Mining. 277�285.

[26] Lukasz Kaiser, Aidan N Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar,
Llion Jones, and Jakob Uszkoreit. 2017. One model to learn them all. arXiv
preprint arXiv:1706.05137(2017).

[27] Eric R Kandel, James H Schwartz, Thomas M Jessell, Department of Biochem-
istry, Molecular Biophysics Thomas Jessell, Steven Siegelbaum, and AJ Hud-
speth. 2000.Principles of neural science. Vol. 4. McGraw-hill New York.

[28] Thomas N Kipf and Max Welling. 2016. Semi-supervised classi�cation with
graph convolutional networks.arXiv preprint arXiv:1609.02907(2016).

[29] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. 2015. Deep Learning.Nature
521 (2015), 436�444.

[30] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2020. Gshard:
Scaling giant models with conditional computation and automatic sharding.
arXiv preprint arXiv:2006.16668(2020).

[31] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola,Amr Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su.2014. Scaling dis-
tributed machine learning with the parameter server. In11thf USENIXgSympo-
sium on Operating Systems Design and Implementation (f OSDIg14). 583�598.

CARLS: Cross-platform Asynchronous Representation Learning System Technical Report'21, Google, LLC

[32] Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi Parikh, and Stefan Lee.
2020. 12-in-1: Multi-task vision and language representation learning. InPro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
10437�10446.

[33] Yao Lu, Sören Pirk, Jan Dlabal, Anthony Brohan, Ankita Pasad, Zhao Chen, Vin-
cent Casser, Anelia Angelova, and Ariel Gordon. 2020. Taskology: Utilizing Task
Relations at Scale.arXiv preprint arXiv:2005.07289(2020).

[34] Tharun Medini, Qixuan Huang, Yiqiu Wang, Vijai Mohan, and Anshumali Shri-
vastava. 2019. Extreme classi�cation in log memory using count-min sketch: A
case study of amazon search with 50m products.arXiv preprint arXiv:1910.13830
(2019).

[35] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: generalized pipeline parallelism for DNN training. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles. 1�15.

[36] PyTorch. 2018. http://pytorch.org http://pytorch.org.
[37] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-

hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
[n. d.]. Learning Transferable Visual Models From Natural Language Supervi-
sion. Image2 ([n. d.]), T2.

[38] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Im-
proving language understanding by generative pre-training. (2018).

[39] Alec Radford, Je�rey Wu, Rewon Child, David Luan, DarioAmodei, and Ilya
Sutskever. 2019. Language models are unsupervised multitask learners.OpenAI
blog1, 8 (2019), 9.

[40] Colin Ra�el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Explor-
ing the Limits of Transfer Learning with a Uni�ed Text-to-Text Trans-
former. Journal of Machine Learning Research21, 140 (2020), 1�67.
http://jmlr.org/papers/v21/20-074.html

[41] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Ge-
o�rey Hinton, and Je� Dean. 2017. Outrageously large neuralnetworks: The
sparsely-gated mixture-of-experts layer.arXiv preprint arXiv:1701.06538(2017).

[42] Liuyihan Song, Pan Pan, Kang Zhao, Hao Yang, Yiming Chen, Yingya Zhang,
Yinghui Xu, and Rong Jin. 2020. Large-Scale Training Systemfor 100-Million
Classi�cation at Alibaba. InProceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2909�2930.

[43] Otilia Stretcu, Krishnamurthy Viswanathan, Dana Movshovitz-Attias, Anthony
Platanios, Sujith Ravi, and Andrew Tomkins. 2019. Graph agreement models for

semi-supervised learning. (2019).
[44] Yukihiro Tagami. 2017. Annexml: Approximate nearest neighbor search for ex-

treme multi-label classi�cation. InProceedings of the 23rd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining. 455�464.

[45] Maarten van Steen and Andrew S. Tanenbaum. 2017.Distributed Systems. Cre-
ateSpace Independent Publishing Platform.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. InAdvances in Neural Information Processing Systems (NIPS). 5998�6008.

[47] Petar Veli£kovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks.arXiv preprint
arXiv:1710.10903(2017).

[48] Jason Weston, Sumit Chopra, and Antoine Bordes. 2014. Memory networks.
arXiv preprint arXiv:1410.3916(2014).

[49] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai,William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. InProceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974�983.

[50] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. 2014. From image
descriptions to visual denotations: New similarity metrics for semantic inference
over event descriptions.Transactions of the Association for Computational Lin-
guistics2 (2014), 67�78.

[51] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. From recogni-
tion to cognition: Visual commonsense reasoning. InProceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 6720�6731.

[52] Yun Zeng, Siqi Zuo, and Dongcai Shen. 2020. DynamicEmbedding: Extend-
ing TensorFlow for Colossal-Scale Applications.arXiv preprint arXiv:2004.08366
(2020).

[53] Xingcheng Zhang, Lei Yang, Junjie Yan, and Dahua Lin. 2018. Accelerated train-
ing for massive classi�cation via dynamic class selection.In Proceedings of the
AAAI Conference on Arti�cial Intelligence, Vol. 32.

[54] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and Ping Li.
2019. AIBox: CTR prediction model training on a single node.In Proceedings of
the 28th ACM International Conference on Information and Knowledge Manage-
ment. 319�328.

[55] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma,
Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for
click-through rate prediction. InProceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. 1059�1068.

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed CARLS
	3.1 Knowledge Maker
	3.2 Knowledge Bank
	3.3 Model Trainer

	4 Learning Paradigms
	4.1 Semi-Supervised Learning
	4.2 Curriculum Learning
	4.3 Multimodal Learning

	5 Conclusion

