
The CLEVER search system

Ravi Kumar∗ Prabhakar Raghavan† Sridhar Rajagopalan∗ Andrew Tomkins∗

Abstract

This chapter describes the CLEVER search system
developed at the IBM Almaden Research Center. We
present a detailed and unified exposition of the var-
ious algorithmic components that make up the sys-
tem, and then present results from two user studies.

1 Introduction

The subject of this chapter is the CLEVER search
system developed at the IBM Almaden Research
Center. Our principal focus is a detailed and uni-
fied exposition of the various algorithmic components
that make up the system. Many of these have hith-
erto appeared in a number of papers and reports;
some have appeared in incomplete form; and others
have never been disclosed. In addition, we summa-
rize the results of two user studies performed during
the project.

The web has proven to be a fertile test bed for
combining ideas from human behavior and social net-
work analysis together with traditional information
retrieval. The latter discipline has focused on rela-
tively focused corpora that are small, with uniform
and high-quality documents. The networking revo-
lution made it possible for hundreds of millions of
individuals to create, share and consume content on
a truly global scale, demanding new techniques for
information management and searching. One partic-
ularly fruitful direction has emerged here: exploit-
ing the link structure of the web to deliver better
search, classification and “mining”. The idea is to tap

∗IBM Almaden Research Center, 650 Harry Road, San Jose,

CA 95120.
†Verity Inc, 892 Ross Dr., Sunnyvale, CA 94089. This work

was done while the author was at the IBM Almaden Research

Center.

into the annotation implicit in the actions of content
creators: for instance when a page-creator incorpo-
rates hyperlinks to the home pages of several football
teams, it suggests that the page-creator is a football
fan.

But the large body of work leveraging this link
structure has developed a unifying theme which we
echo here: hyperlinking provides a powerful and effec-
tive tool, but only in conjunction with other content-
based techniques. The Google search engine [10],
for instance, makes heavy use of link analysis in the
form of PageRank values [3]; however, the ranking
algorithm has roughly a hundred additional terms
that make the approach truly effective. Similarly, the
CLEVER search system began with purely link-based
techniques, and over time incorporated a variety of
content-based additions, many in response to specific
conditions prevailing on the web.

Historically, many of these ideas first came into
existence in the CLEVER project with the develop-
ment of Kleinberg’s HITS algorithm [11] at IBM, dur-
ing 1997. The framework of HITS was both elegant
and extensible, leaving open a number of avenues for
further exploration and refinement. Many research
groups seized on (and continue to explore) these pos-
sibilities (see Section 2 for more background); the
CLEVER project at IBM was perhaps the earliest of
these. From 1997 to 1999, the project focused largely
on search, before shifting to a focus on measurement
and mining. Our goal here is to provide a unified and
complete view of the salient technical results derived
from the project in the search domain.

The remainder of the paper proceeds as follows. In
Section 2 we present some background in the area of
link analysis. However, in order to keep the presen-
tation focused, we assume that the reader has some
familiarity with the domain. Section 3 describes the



CLEVER search system in detail. Section 4 then
presents some experimental results, and Section 5
concludes.

2 Background

Link analysis [11, 3], particularly in conjunction with
text-based methods [10, 2, 5, 22], is generally believed
to enable significant improvements in ranking quality.
However, implementing link-based ranking methods
for the WWW is challenging, primarily due to the
highly variable nature of web pages.

The basis for the CLEVER system is the HITS [11]
algorithm. We describe it now for completeness. The
interested reader is referred to the original paper for
greater detail. Given a collection of pages, the HITS
algorithm computes two scores corresponding to each
page in the collection. The first is the hub score: this
measures the value of the page as a collection of re-
sources. The second is the authority score: which
measures public opinion of the quality of any page.
The two scores are expressed as vectors (~h and ~a)
with as many dimensions as the number of pages in
the collection, and with each dimension correspond-
ing to a page.

Kleinberg posits that hub pages and authority
pages of good quality share a mutually reinforc-
ing relationship, namely, good hub pages point to
many good authorities, and good authority pages are
pointed to by many high quality hub pages. Letting
A be the citation matrix, i.e. Aij = 1 if and only if
page i points to page j, we can mathematically state
this relationship using the formulae:

~a ∝ AT~h, ~h ∝ A~a

and furthermore, since both ~h and ~a are scoring func-
tions, we have ~h,~a ≥ 0. Here AT is the transpose
of matrix A. Under fairly general conditions on A
(see [9] for details), the simultaneous equations above
have a unique non-negative, non-zero, solution. The
hub-vector ~h is the principal eigenvector of AAT ,
and the authority vector ~a is likewise the principal
eigenvector of AT A. Both vectors can be computed
approximately by iterative methods, or exactly by
Gaussian elimination.

A number of systems and algorithms have been
proposed as extensions to the HITS framework, in-
cluding the Salsa system of Lempel et al [14], and
the work of Toyoda and Kitsuregawa (see for in-
stance [21]). We focus here on the CLEVER system
in particular, and refer the interested reader to the
citations above for more information about related
approaches.

CLEVER represents a set of two classes of exten-
sions within the HITS framework. The first class con-
sists of modifications that preserve the overall struc-
ture of the HITS iterations, but allows the matrix to
contain real values rather than simply 0 or 1 values.
Thus, clever uses edge weights to reflect how relevant
each link is to the subject of the query. The princi-
ple here (sometimes known as lexical affinities [15])
is that if relevant text occurs in the proximity of the
link, the link is more likely to be significant. The
exact computation of the weight matrix is somewhat
more complex and is described in Section 3.4.

The second class of modifications comprises exten-
sions to the HITS framework itself; these modifica-
tions often fall into the category of heuristics, and are
discussed throughout Section 3.

It is instructive to compare HITS to PageRank[3],
the ranking system used as a basis for the Google
search engine[10]. Consider the matrix M where
Mij = 1/di. Here di is the out-degree of page i, and
specifies the exact number of out-links on it. This
matrix is also known as the Markov matrix related
to the graph defined by A. Unlike the HITS fam-
ily of algorithms, the PageRank algorithm computes
the the eigenvector of λM + (1 − λ)[1/n]. Here n is
the number of pages (nodes) in the entire graph, and
[1/n] represents the matrix with each entry 1/n. The
motive for the PageRank algorithm comes from the
“random surfer model.” Imagine a random surfer,
who follows links out of a page at random with prob-
ability λ and once in a while (with probability 1−λ)
jumps to an entirely new random page on the web
distributed uniformly among all pages. The princi-
pal eigenvector of λM +(1−λ)1 measures how often
such a surfer would visit each page i if he were to
continue browsing for an infinitely long time. Brin
and Page (see [3]) posit that this quantity can be
used as a static estimate of page quality.

1



We digress at this time to a recent observation of
[12]. The “random jump” with probability λ gives
the PageRank iteration a greater stability, in that
page ranks tend not to change dramatically with the
deletion of a few edges. HITS and related schemes are
conversely less stable. If HITS (and variants) were to
be “relaxed” using a similar linear combination, then
this effect can be mostly mitigated. We refer the
interested reader to [12].

Similarly, the question of stability raises the web
question of resilience to link spamming, or creation
of pages whose out-links are chosen to increase the
score of some target in a link-based ranking scheme.
PageRank requires that important pages be cited by
important pages, and therefore incorporates natu-
ral resistance to link spam. However, systems exist
to spam both HITS and PageRank, and any well-
engineered system will require safeguards against
such behavior.

Finally, we should note that the implementa-
tion of PageRank in the Google system is query-
independent; the PageRank scores provide a static
ranking of all web pages, and this ranking is used
with many other factors to produce the final output
for a particular query. The CLEVER system, on the
other hand, incorporates the query directly into the
matrix at runtime. Therefore, implementing the run-
time is a greater challenge. In particular, we cannot
consider computing the CLEVER rank for every page
on the web given a query.

Instead, we implement CLEVER as a three stage
process. The first stage is a naive indexing step in
which we simply choose a small number of pages (the
root set) which contain the query terms. In the sec-
ond stage, we do a small focussed crawl starting from
the root set to identify a larger collection of pages to
process (the base set). Finally, we rank all the pages
in the base set using the algorithms defined in Sec-
tion 3. This brings us to a fine distinction in the im-
plementation described in this paper and those which
are more common in web scale search engines. Our
algorithms are best viewed as refinement algorithms,
those which given a small (or medium) sized collec-
tion of pages, refines the search within this set. In our
context, two pages may be ranked in different orders
given different queries.

3 The CLEVER system

Section 2 presents Kleinberg’s HITS algorithm, which
represents a clean and mathematically-grounded
framework. However, as discussed earlier, there are
a number of issues that arise in building an actual
system to implement this algorithm, and in modi-
fying the algorithm to deal with the vicissitudes of
web data. Addressing these issues resulted in the
CLEVER system. In this section we describe the
system and give some motivation for the particular
extensions we found necessary.

The scope of this paper does not allow us to provide
a “Users Manual” of the system—instead, we seek to
provide a sense of the implementation, and enough
algorithmic details that the reader could reproduce
the the functionality.

We begin in Section 3.1 with a description of some
of the concepts behind extensions to the HITS frame-
work. Next, Section 3.2 describes some system issues
such as the hardware for which the system has been
developed, and the parameters and control files that
influence the functioning of the system. Then Sec-
tion 3.3 describes the data gathering, or crawling,
phrase of the algorithm. Section 3.4 describes the
process of constructing a weighted graph based on
the crawled data. Section 3.5 then describes the ac-
tual iterative procedure applied to the graph. Finally,
Section 3.6 describes the final creation of the output.

3.1 Extensions to the HITS Frame-

work

In this section we list a number of components of
CLEVER search which represent extensions to (or
in some cases departures from) the traditional HITS
framework. We also seek to give some motivation
for the extensions, based on real-world examples of
structures that might lead a naive link-based algo-
rithm astray.

• Controlling the Engine: Execution of the
CLEVER system depends on the values of a
number of parameters (currently 57). These pa-
rameters are specified in a set of SGML-style
configuration files, and can in many cases be set

2



or modified using an advanced web search front-
end.

• The Query Language: The system allows users
to specify five different sets of keywords. The
first set is sent to the search engines in order to
seed the search, but is not used to weight links
between pages. The second set is used for link
weighting, but does not influence the queries sent
to search engines. The third set, which is used by
default for keywords entered from a search front-
end, influences both the search engine query and
the link weighting algorithm. The fourth set con-
tains terms that a page must include in order
to be part of the final output. And the fifth
and final set contains terms that a page may not
include in order to be part of the final output.
Typical users arriving through the web front-end
use only the third set; more sophisticated users
may use all five.

All of these sets are specified using keyword
search semantics based on Altavista’s “Ad-
vanced Search” language. Query terms may be
single words or double-quoted phrases. Terms
may be preceded by a + or −, to imply empha-
sis or de-emphasis of the term. These modifiers
impact crawling because they are sent directly to
the search engines used to generate the initial set
of pages. They also impact the graph generation
stage because keyword modifiers have significant
influence on the weights assigned to links, based
on keywords that are roughly proximate to the
anchor.

• Incorporation of Textual Content into Edge

Weights: There are a number of factors used
to determine the weight of a particular edge (see
Section 3.4 for details), but the most important
is the textual content surrounding the location of
the anchor. If the anchortext contains the query
term, the edge should be treated as highly rele-
vant. While the anchortext itself is critical, we
also allow text appearing within some window
of the anchor to influence the weighting, with a
diminishing contribution depending on distance
from the anchor. We refer to the graph showing

contribution as a function of word location as
the “tower bridge function”: flat along the an-
chortext itself, then falling off linearly on either
side.

More formally, let aij be zero if there is no
link from page i to page j, and be positive if
a link exists. The value of the textual contribu-
tion to that edge weight has a contribution from
each query term. The contribution of a query
term appearing at distance i within a window
W of terms from the hyperlink is proportional
to W − i. Query terms within quotes are treated
as atomic units, so the word “car” generates no
contribution for the query “vintage car.”

• Nepotistic Links: A nepotistic link has both
source and destination on the same web site.
Such links represent a form of self-promotion,
in that a web site confers authority upon itself.
Thus, we seek to discard these links. It there-
fore becomes important to determine when two
pages are on the same site. To make this de-
termination, we use information about the URL
and IP address of the two pages. See Section 3.4
for details.

• Covering Heuristic: The value of a hub page
is by definition in its links rather than its con-
tents. If all the destinations accessible from a
particular hub are also accessible from better
hubs, we do not need to output this hub. More
generally, we seek to return a set of hub pages
that together contain as many unique, high-
quality links as possible. We therefore apply a
well-known greedy set-cover heuristic as follows.
Once the iteration step has converged, we repeat
the following process until we have generated the
correct number of hubs: return the best hub,
zero the authority values of all pages pointed to
by the hub, and recompute hub values. See Sec-
tion 3.6 for details.

• Authority Packing Heuristic: Despite the re-
moval of nepotistic links, it is possible for in-
stance for an organization’s homepage, and sev-
eral children of that page, to accumulate author-
ity. However, in the final output we wish to pro-

3



vide the user with as much authoritative sub-
stance as possible in a small number of pages.
To achieve this, after each step of the iteration
we “re-pack” the authority of any site, as fol-
lows: if multiple documents within a logical site
(as defined above) have non-zero authority, the
authorities of all but the page with the largest
authority are set to zero. See Section 3.5 for
details.

• Hub Functions: Many resource compilations
(e.g., bookmark files) contain pages pertinent to
a number of disjoint topics. This causes such
compilations to become good hubs, which in turn
causes irrelevant links from the same page to be-
come good authorities. To address this problem
we note that pointers to pages on the same topic
tend to be clustered together in resource compi-
lations. We allow each link in a web page to have
its own hub value, so the hub value of a page is
now a function of the particular link rather than
a constant. When computing authority values,
the authority of the destination is incremented
by the hub value of the link. When recomputing
hub values, the authority value of the destina-
tion is used to increment the hub value of the
source link, and according to a spreading func-
tion, the hub values of neighboring links. Thus,
useful regions of a large hub page can be identi-
fied. The final hub value of a page is the integral
of the hub values of its links. See Section 3.5 for
details.

• Page relevance: A set of irrelevant but highly-
linked pages might accidentally creep into the
crawled set of pages, and become highly-ranked
hubs and authorities due to their mutual rein-
forcement. Or more likely, some pages might
be clearly “on-topic,” while others might be of
limited or zero relevance. The algorithm makes
strong use of text near links in order to determine
relevance of a link, but nonetheless, we would
prefer not to conflate pages that are entirely ir-
relevant with pages that are relevant but happen
not to have a keyword appearing near a link.

Thus, we use a traditional ranking function to

determine the overall relevance of the page to the
query. Based on the relevance of the source and
destination pages, we increase or decrease the
weight of links between them. See Section 3.4
for details.

• Exemplary Pages: The user may identify cer-
tain URLs as exemplary hubs, authorities, or

sites. Exemplary hubs are high-quality collec-
tions of links to topical pages. Exemplary au-
thorities are high-quality pages about the topic.
Exemplary sites are both. Additionally, the user
may identify stopsites : URLs that should not
be crawled under any circumstances. See Sec-
tions 3.3 and 3.4 for a full description.

These types of pages impact the algorithm in
two ways. First, they influence the set of pages
crawled by the system. Second, they influence
the edge weights connecting hyperlinked pages.
The following describes these issues in more de-
tail:

– Each exemplary hub is added to the graph
along with its out-neighbors, and all pages
connected (through in-links or out-links) to
the hub or its out-neighbors.

– Each exemplary authority is added to the
graph along with all pages that point to
at least two exemplary authorities, and all
pages connected (through in-links or out-
links) to the authority such an in-neighbor.

– Each exemplary site is added to the graph
with its in- and out-neighbors, and all pages
connected (through in-links or out-links) to
the page or its neighbors.

– Each stopsite is eliminated before being
crawled.

The intuition behind these rules is the follow-
ing. We believe the pages pointed-to by an ex-
emplary hub to be high quality candidate au-
thorities. Therefore, pages that point to these
pages have a better than average chance of be-
ing good hubs. So we add these candidate to
the graph. Similarly for exemplary authorities:

4



pages that point to two or more exemplary au-
thorities are high-quality candidate hubs, so we
place them in the initial set so any candidate au-
thorities they point to will be added to the root
set. The asymmetry in treatment of exemplary
hubs and exemplary authorities arises because
the user who specifies an exemplary hub knows
all the out-links of the page, while the user who
specifies an exemplary authority may not know
all the in-links of the page.

Exemplary sites also influence edge weighting.
Intuitively, the edges that point to example au-
thorities or edges originating at example hubs
should weigh more. Additionally, if a page is
cited in the lexical neighborhood of example au-
thorities, then that link should weigh more. Let
w(x, y) denote the weight of the edge from x to
y in the graph. The following four heuristics are
in addition to the basic edge-weighting schemes
stated in [4, 5]: (1) If x is an example hub and
x points to y, then w(x, y) is increased; (2) If y
is an example authority and x points to y then
w(x, y) is increased; (3) If y is an example au-
thority and x points to both y and y′ in the same
lexical neighborhood, then w(x, y′) is increased;
and (4) If y and z are example authorities, and
x points to y′ in the same lexical neighborhood
with both y and z and the reference to y′ is be-
tween the references to y and z then w(x, y′) is
increased.

Consider searching for long-distance phone com-
panies. If Sprint and AT&T are example author-
ities for this node, and both occur in a single list
of links, we have strong evidence that the other
elements of the list may be relevant to the topic.
However if the list contains only AT&T then we
have only weak evidence that the list is about
long-distance phone companies. The increase in
weight of an edge is a super-linear function of
the number of links to example authorities oc-
curring the edge, and of the proximity of the
edge to these links.

3.2 System issues

The code for CLEVER is written in C and C++, and
runs under Linux (RedHat 6.2) and AIX. It repre-
sents approximately 10K lines of code. The system is
invoked from the command line, and leaves its results
in various support files. It is also invoked through a
set of cgi scripts which we do not describe. The en-
tire system resides on a single machine, and does not
support distributed operation. It executes as a single
process and fetches data using multiple threads.

Various parameters (currently 57, as noted earlier)
control the operation of the system. In the initial
phases of the algorithm, these parameters are loaded
from a global default SGML-style config file, a sim-
ilar user-specified config file, and the command line.
If the query has been run recently and the result is
cached, then the system returns the cached result and
exits. The setup phase then checks for various con-
sistency conditions such as the presence of data di-
rectories, and exits with an error if any of these tests
fail.

In the following sections, various numerical param-
eters control the behavior of the algorithm. For con-
creteness, we often specify default values for these pa-
rameters. The defaults typically result from some ex-
ploration of the parameter space, but typically have
not been subjected to a rigorous sensitivity analysis.

3.3 Crawling

The CLEVER system performs five phases of crawl-
ing, after which the system has resident a set of web
pages relevant to the query upon which link and text
analysis can be performed. Each of the five phases
uses the same crawling infrastructure. We begin with
an overview of that infrastructure, and then describe
the five phases in turn.

3.3.1 Operation of the Crawling Module

The crawling module operates as follows. First,
a Crawl object is created to control the fetching
threads. This object reads all URLs into mem-
ory, and creates job records for them. It guaran-
tees that no stopsites are fetched, and that no page

5



is fetched more than once at any point during pro-
cessing. The Crawl object then creates a number of
fetcher threads, based on a system parameter. As the
fetcher threads retrieve pages, the Crawl object mon-
itors the total number of pages successfully fetched.
Based on a profile depending on the fraction of pages
retrieved, the fetch is aborted if a certain amount of
time passes from completion of the most recent fetch.

Each fetching thread regularly checks a shutdown
flag to determine whether it should terminate. If not,
it retrieves the next job from a shared data struc-
ture, and spawns a fetch. The fetch takes a timeout
parameter which is passed down to all socket opera-
tions. The fetcher then operates as follows. First, it
checks to see that the maximum number of redirects
has not yet been reached for this URL. Next, it ver-
ifies the hostname and port. It opens a connection
either to the server, or to a SOCKS server if neces-
sary, sends the http request, and waits for data with
a timeout. As data arrives, it reads it into a buffer
with a maximum allowable data size. If the result is
a redirection, it changes the target URL and iterates.

At the conclusion of a fetch operation, the crawling
module returns the status of the fetch.

We found that following redirects is essential to
gathering a sufficiently high quality dataset. Fur-
ther, we found that a realistic approach to timeouts
if crawling is being performed in response to a user
query, is also essential. Fetching a few hundred or
thousand pages could take a few seconds to a few
minutes, with reasonable timeout procedures, but the
last 10% of the pages might take substantially longer
and might never be successfully retrieved.

Similarly, like many before us, we found that DNS
code is not well suited for rapid crawling in a single
process, and that the reentrant versions are either
buggy, or lock a process-global mutex, or both. We
modified the DNS fetch code in order to allow multi-
threaded operation.

3.3.2 Phases of Crawling

Crawling Phase 1: Search Engine Queries

The crawling is seeded by querying 200 pages from
internet search engines. The formats of six search en-
gines are known to the system, and a control param-

eter specifies the subset to be used. The 200 pages
are split evenly between all search engines specified
in the control parameter.

The search engine query is built by gathering all
relevant keywords (see the Query Language discus-
sion in Section 3.1), possibly including new keywords
generated by an aliasing mechanism that allows a
user to specify a “concept” which has been associ-
ated with a full sub-query. This query is then sent to
engine-specific generators which create URLs for the
fetches. To this resulting set of query URLs, the sys-
tem also adds the URLs for all exemplary sites and
exemplary hubs, and adds URLs that will fetch from
a search engine the in-links to all exemplary sites and
exemplary authorities. As a result, the rootset will
contain exemplary hubs and their out-links, and ex-
emplary authorities and their in-links. After expan-
sion of the rootset, as described in Section 3.1, the
final graph will contain pages that link to the sorts
of pages linked-to by exemplary hubs, and also pages
that are pointed-to by the kinds of pages that point
to exemplary authorities.

These query URLs are then sent to the crawling
module. The resulting pages are parsed and their
out-links are gathered into a set called the root-
set urlfiles. All exemplary pages (including exem-
plary hubs, authorities and sites) are then added to
the rootset urlfiles. Finally, additional URLs may be
specified via a parameter to be added directly into
rootset urlfiles.

Next, each URL in rootset urlfiles is passed to an
in-link query generator that creates a URL to be sent
to a search engine that will extract in-links to the
page. These in-link query URLs are all written to a
set called rootfile inlink queries to be fetched during
the third phase of crawling.

During the parsing of the query URLs and the
pages of the rootset, a number of limits are imposed
on the number of links a single page can generate, and
the number of links the entire set can generate. Once
a per-page limit is reached, processing of the page is
aborted. Once a per-set limit is reached, processing
is aborted for the entire set.

Crawling Phase 2: The Rootfiles

Next the rootset urlfiles are sent to the crawling

6



module. The resulting pages are parsed, and the
extracted URLs are written to a set called root-
file outlinks. These are fetched during phase 4.

Crawling Phrase 3: Querying In-links to Root-

files

Next the rootfile inlink queries are crawled. These
URLs contain queries to search engines, built to ex-
tract pages that link to rootfile URLs. The result-
ing search engine pages are parsed, and links are ex-
tracted into a set called rootfile inlinks. These are
fetched during phase 5.

Crawling Phrase 4: Rootfile Out-links

Next, the rootfile outlinks set is sent to the crawl-
ing module, which results in all the pages linked-to
by pages in the rootset.

Crawling Phrase 5: Rootfile In-links

Finally, the rootfile inlinks set is crawled, resulting
in pages that link to pages in the rootset.

3.4 Graph Generation

Now that crawling is complete, all further processing
is local to the machine. This section describes the
creation of a weighted graph representing a combi-
nation of link and text information. The following
section then describes the iterative algorithm to pro-
cess that graph in order to generate final hubs and
authorities.

Initially, the system gathers together all query
terms to be used in edge weighting, and breaks
them into positive (terms with a + modifier), neg-
ative (terms with a − modifier), and unsigned (all
other terms). Query term matching for edge weight-
ing is case-insensitive, so all terms are downcased.
All pages are then scanned for occurrences of query
terms. The following naive ranking function is used
to determine the relevance of a page to the set of
query terms, for use in the page relevance heuristic
described in Section 3.1. For each page, the num-
ber of positive, negative, and unsigned query terms
is computed. Pages are then split into three class,
based on relevance: strong, normal, and weak. Any
page containing a negative query term, or containing
no query terms, is automatically weak. Otherwise,
let p be the number of positive terms in the query.

Then a page is strong if it contains at least two dis-
tinct query terms, and also contains at least min(2, p)
distinct positive terms. Otherwise, a page is normal.

3.4.1 Filter Terms

As described in the Query Language overview of Sec-
tion 3.1, there are two sets of parameter keywords
that contain terms which must, or must not, be con-
tained on any page that becomes part of the final
output of the system. These keyword sets are re-
ferred to as “postfilters.” Postfilters do not affect the
execution of the algorithm, but pages that fail some
postfilter are not output. The “include postfilter”
consists of a set of terms, any of which may have a
“+” modifier. To pass the filter, a page must contain
every “+” term, and at least one of the other terms
in the filter, if any. The “exclude postfilter” consists
of a set of unmodified terms. To pass this filter, the
page must not contain any term in the set. The re-
sults of this filtering set are used during output.

3.4.2 Graph Vertex Construction

A “shingle” value is computed for each page along the
lines of the computation defined by Broder [19], and
duplicates are removed. Within a class of duplicates,
one page at random is chosen as the representative
of that class and kept. All edges whose destination
is a duplicate page are modified to point instead to
the primary representative of their shingle class. In
addition, the following pages are removed:

• pages whose URL is a search engine

• pages that are too small (10 bytes or fewer)

• stopsites (different rules for intranet and inter-
net)

Next, titles are generated for each page, to be used
during output. Also, the URL of each page is canon-
icalized, and IP addresses are gathered for all pages
(this information was computed during the crawling
phase). The canonical form of the URL and the IP
address are used below to determine whether two
pages are deemed to be from the same site.

7



3.4.3 Graph Edge Construction

Each page is now parsed, and all hyperlinks are ex-
tracted. If the destination is not in the graph, the
edge is removed from consideration. Further, a pa-
rameter gives a hard limit on the total number of
out-links from a page. Additionally, relative URLs
are not added to the graph (except in processing in-
tranet data). Finally, “nepotistic edges” within a site
are not considered.

The Same Site Algorithm Two pages are deemed
to be from the same site if they meet either of the
two following conditions:

1. They have similar IP addresses, determined as
follows:

Address Class Match Requirements
Class A and B addresses two top octets
Class C addresses three top octets
Class D addresses all octets

2. They have similar URLs, based on the following
three rules:

(a) URLs of the form “. . . /∼joe” or
“. . . /[Uu]sers/joe” are treated as be-
ing from site “. . . joe”

(b) URLs that match a set of templates (ie,
www.geocities.com/Colosseum/Arena/5400/,
or members.tripod.com/username) are
matched according to special rules

(c) Otherwise, sites are extracted per RFC
2396.

3.4.4 Edge Weight Computation

Each page is divided into regions using the regular
expression “〈h[1-6]r〉” as the region separator.

The weight of an edge is then determined according
to a variety of local and global factors.

Local Edge Weighting Factors

1. Each edge begins with some constant weight, by
default 3.

2. Fix a particular edge. A query term appear-
ing within i terms of the anchor for that edge

is given weight 10-i as described in Section 3.1.
That weight is doubled for positive query terms,
and negated for negative query terms. These
contributions are summed over each query term
occurring within 10 terms of the anchor in either
direction.

3. Edges from exemplary hubs are scaled by some
factor (default 1.1) and edges to an exemplary
authority are scaled by some factor (also default
1.1)

4. Page relevance weighting (strong, normal, weak)
is incorporated as follows. Let e denote the page
relevance ranking parameter, from 0 to 100. Let
s and w be the number of strong and weak pages
in the set {src,dest}. Then the resulting edge
weight is multiplied by the page relevance mul-
tiplier m = 1.4(s−w)e/100

5. For each region of size < 25, the weight of each
edge in the region is increased by 1.1 (resp. 1.5)
if there is one (resp. more than one) exemplary
authority linked-to from this region.

Global Edge Weighting Factors

1. Following Bharat and Henzinger [2], for each
link between sites A and B, if there are a to-
tal of n links between A and B, the weight of
each edge between the two sites is multiplied by
(1/n)(f/100) where f is the “inter-site linking fac-
tor”, from [0..100].

3.5 Iteration

Now that the graph has been computed, the iterative
algorithm proceeds as follows. First, an authority
score is attached to each vertex, and as described in
the hub functions section above, a hub score is at-
tached to each edge. The iteration then proceeds
by repeatedly computing hub scores and authority
scores, and then renormalizing. We now describe
these three steps, beginning with the recomputation
of authority scores as it is most straightforward. Let
h(e) be the hub score associated with edge e, w(e) be
the weight of edge e, and a(p) be the authority score
of page p.

8



recompute auth scores: Let I(P ) be the set of in-
links to page P . We set a(P ) =

∑
e∈I(P ) h(e) ·

w(e).

recompute hub scores: This function implements
hub functions as described earlier. The algo-
rithm processes each edge e from page P to page
Q as follows. Consider the location of e within
P . Define N(e) to be the set of all edges that are
both within the region of e within P , and within
8 edges of e in that region. During processing of
e, the hub score of each edge e′ ∈ N(e) will be
updated.

The “raw score” r(e) is set to a(Q) · w(e). For
each e′ ∈ N(e), let d(e, e′) be the number of
edges between e and e′ in the appropriate region
of P ; this is an integer between 0 and 8. We
would like to add r(e)/(1 + d(e, e′)) to the hub
score of e′, but this may allow authority to be
propagated down a low-weight edge, then back
out a high-weight edge, causing a low authority
on A1 to result in a huge authority score for A2
simply because the edge pointing to A1 has much
lower weight. Thus, we define the edge ratio
σ(e, e′) = w(e′)/w(e). Finally, we can state the
complete algorithm. First, ∀e ∈ E, e← 0. Then:
∀e ∈ E, e′ ∈ N(e) :

h(e′)← h(e′) + r(e)σ(e, e′)/(1 + d(e, e′)).

renormalize: Renormalization has two steps. First,
and only if the appropriate boolean parameter is
set, the value of each non-maximal authority on
a site is set to 0. Second, the authority and hub
score vectors are normalized to have 2-norm 1.

Iteration proceeds for a fixed number of steps, usu-
ally 5-10, and then terminates.

3.6 Output

First, as many authorities as necessary are output in
order from the list of all pages sorted by final au-
thority score. Pages are output only if they pass the
postfilters as described above. Once a sufficient num-
ber of authorities has been output, output of hubs
proceeds as follows.

1. The hub score of each page is set to the sum of
the hub scores of all edges on the page.

2. The best hub to pass the postfilter is output.

3. The authority scores of all authorities pointed-to
by this hub are reduced by a constant factor be-
tween 0 and 1, given by a parameter, by default
1.

4. All hub scores are recomputed according to re-
compute hub scores().

5. All hubs are resorted, and the procedure iterates
until an appropriate number of hubs have been
output

4 Experiments and results

This section reports on experiments to evaluate the
performance of the CLEVER search system as a
search tool (Section 4.1) and as a tool for automati-
cally constructing taxonomies (Section 4.2).

Traditional IR systems are evaluated using the
measures of precision and recall on a large pre-
evaluated corpus [18]. Evaluating the performance
of a web search system, however, is a tricky issue for
the following reasons:

• The web is large: The web contains more than 2
billion documents. At this magnitude, rating the
entire web (even automatically) is out of ques-
tion.

• The web is growing: Around ten million new
pages are created every day. Even if one were to
create a pre-evaluated web corpus, this could be
used to evaluate actual search engines for only
a brief window (probably shorter than the time
to gather the relevance judgments) before the
corpus became “stale”.

• The web is dynamic: The composition of a “typi-
cal” web document in terms of links, text, graph-
ics, etc. is changing. Therefore, labeling today’s
web as a corpus and using it to evaluate/compare
search systems can be dangerous as the results

9



for today’s web may not generalize to the future
web.

• Search engines are incomplete: No search engine
can index “all” the web. So, the notion of recall
is problematic in web search.

The closest approximations to “relevance judgments”
on today’s web are portals such as Yahoo! and
OpenDirectory, which through human involvement
collect high-quality pages on a number of topics.
While the above reasons imply that these portals
cannot index the web exhaustively, they do provide
“soundness” judgments. More precisely, for a fixed
topic, if a search engine returns a page that is also
indexed by the portal under that topic, then it is a
strong indication that the page is of high quality; if,
however (as is more likely), the portal does not index
the page, we have no information about the quality
of the page.

4.1 CLEVER as a search engine

We study the performance of CLEVER as a search
engine. Since at the time of this study there were no
standard benchmarks for evaluating web search sys-
tems1, we compared ourselves against the then best-
known automatic search engine, Altavista[1], and
the then best-known human-compiled resource site,
Yahoo![23]. We chose 26 broad-topic queries: +Thai-
land +tourism, +recycling +cans, “Gulf war”, “af-
firmative action”, “amusement park”, “classical gui-
tar”, “computer vision”, “field hockey”, “graphic de-
sign”, “lyme disease”, “mutual funds”, “parallel ar-
chitecture”, “rock climbing”, “stamp collecting”, “ta-
ble tennis”, “vintage car”, HIV, alcoholism, bicy-
cling, blues, cheese, cruises, gardening, shakespeare,
sushi, and telecommuting. For these queries, we com-
puted the precision of all three sources on a fixed
number of pages according to our user-provided rele-
vance judgments and compare these results. We refer
to this technique as comparative precision. The de-
tails of this experiment appeared in [5].

For each of the 26 queries, we extracted ten
pages from each of our three sources. Altavista and

1This situation has changed with the development of Web-

Track at TREC.

CLEVER were both given the query as it appears in
the table (i.e., with quotes, plus-signs, and capitaliza-
tion intact). The same search was entered manually
into Yahoo!’s search engine, and of the resulting leaf
nodes, the one best matching the query was picked
by hand. If the best match contained too few links,
the process was repeated to generate additional links.
Using this procedure we took the top ten pages from
Altavista, the top five hubs and five authorities re-
turned by CLEVER, and a random ten pages from
the most relevant node or nodes of Yahoo!2. We then
interleaved these three sets and sorted the resulting
approximately 30 pages alphabetically (there are al-
most never duplicate pages from the three sources).
We asked each user to rank each of these pages “bad,”
“fair,” “good,” or “fantastic” based on how useful the

page would be in learning about the query. We took
good and fantastic pages to be relevant, and then
computed precision in the traditional manner. Since
our users evaluated only the pages returned from our
three sources, but did not know which source re-
turned which page, we refer to this type of data as
blind post-facto relevance judgments.

The subjective evaluation of relevance was per-
formed by a set of 37 subjects, yielding 1369 data
points. The subject was free to browse the list of
pages at leisure, visiting each page as many times as
desired, before deciding on a final quality score. We
now outline the results of this experiment.

Precision measures. Table 1 shows the average
comparative precision of each search engine over the
set of 26 queries; recall that we took “good” and “fan-
tastic” to be relevant. CLEVER outperformed both
Yahoo! and Altavista under this metric. While the
favorable comparison to Altavista was expected, the
advantage over Yahoo! was surprising. If we consider
the fraction of queries on which each search engine
performed best, we find that in 50% of all topics,
CLEVER was the best in terms of precision and in
31% of all topics, it tied for first place with Yahoo!
Yahoo! was better than CLEVER for 19% of the top-
ics.

2Yahoo! lists pages alphabetically and performs no ranking,

hence the requirement that we take ten pages at random.

10



Measure Yahoo! Altavista CLEVER

Average Precision .38 .18 .48
Fantastic Fraction .13 .04 .15
Linear Measure .42 .27 .50

Table 1: Precision ratings, by search engine.

Table 1 also gives two alternate measures of over-
all quality. The first measure, “fantastic fraction,”
is the fraction of pages returned that are rated as
“fantastic” (rather than either “good” or “fantastic”
in our original measure). The second, “linear mea-
sure,” weights a “bad” page at 0, a “fair” page at
.33, a “good” page at .66 and a “fantastic” page at
1. CLEVER performs better than all other systems
under all measures, although Yahoo! finds roughly as
many “fantastic” pages (which is not surprising).

Precision vs. rank. We now consider the rank
assigned to a page by each engine. Figure 1 plots the
average precision of the top i pages for each engine,
for i = 1 . . . 10. For this purpose, the ranking func-
tion that we use for CLEVER interleaves the hubs
and authorities starting with the best hub.

One possible concern is that a large Yahoo! node
may contain many good pages and some excellent
ones. Choosing only ten pages at random from such
a node may penalize Yahoo! for gathering more infor-
mation on the topic. However, almost all our Yahoo!
nodes contained fewer than 30 pages and the correla-
tion of precision to Yahoo! node size is minimal, only
−0.09. This indicates that the concern is not serious.

Hubs vs. authorities. The precision scores of
hubs and authorities show only a mild correlation
(0.36). For some topics, hubs dominate, and for other
topics, authorities dominate, suggesting that users
find value in both types of pages. Overall, CLEVER
is better at identifying hubs than authorities—in 72%
of the queries, the comparative precision of the hubs
was at least as high as the authorities.

It remains unclear how to judge the response set
of a search engine as a whole, rather than page-by-

Figure 1: Precision as a function of the rank of pages.

page. Both the covering and the packing heuristics
(Section 3.1) may reject pages that are individually
highly rated in favor of pages that contribute to the
overall quality of the response set. Hence we believe
that the quality of our result set as a collection of
pages will be better than the average precision metric
indicates.

4.2 CLEVER for automated taxon-

omy construction

In this section, we evaluate the performance of
CLEVER as an automatic taxonomy building tool.
This experiment involved a team of four ontologists
(the authors of this chapter). The details of this ex-
periment appeared in [22] and we paraphrase this be-
low.

Our experiment involved the construction of four
taxonomies. Three were drawn from predefined sub-
trees of Yahoo!: Government, Recreation & Sports,
and Science. The fourth “personal” taxonomy con-
sisted of nodes of personal interest to one of our on-
tologists. There were between 100 and 150 nodes in
each of the first three taxonomies, and 70 in the per-
sonal taxonomy, for a total of 455 nodes. We built
each node in the taxonomy three times: (1) Using a
“naive” query consisting essentially of the topic title,
with (occasionally) some simple alternatives. The in-
tent was to simulate a near-automatic process that

11



gives a quick first cut at describing a node. (2) Us-
ing an “advanced text” query consist of descriptive
terms and example terms. The intent was to simu-
late a richer text query possibly using some domain
knowledge, much as in a commercial rule-based clas-
sifier. (3) Using one or more exemplary hubs and
authorities (see Section 3.1 for details about exem-
plary pages). This is the richest form of description
in our experiment—a combination of text and exam-
ple sites.

Our goal in designing these experiments was to
benchmark each mode of taxonomy construction,
monitoring: (1) wall clock time elapsed during the
construction of the taxonomy; (2) quality of resources
found by each; (3) level of exemplification; (4) in-
vestment in looking at results of text searches. Our
system was configured to log all the actions of our
ontologists—these logs yield, among other things, the
wall clock time used in taxonomy construction, the
sequence of mouse clicks, the number of result pages
viewed, etc.

We collected user statistics evaluating the pages as
follows. We enlisted 50 users willing to help in the
evaluation of our results, and decided a priori that
each user could reasonably be expected to evaluate
around 40 URL’s. Therefore, we needed to spread
these 2000 total URL evaluations carefully across the
well over 50,000 URL’s contained in our taxonomy.
We adopted a random sampling approach as follows.
First, we constructed the entire taxonomy in each
of the three modes of operation. After all three ver-
sions of the taxonomy were constructed, we randomly
sampled 200 nodes for evaluation, chosen uniformly
from all nodes. Thus each user would evaluate 4 topic
nodes on average; given the 40-URL limit on user pa-
tience, this suggests that each user can be expected
to view 10 URL’s per topic node.

CLEVER returns 25 hubs and 25 authorities for
each topic node in each of the three modes of tax-
onomy creation, for a total of 150 URL’s. Since we
wish to ask each user to evaluate a total of around 10,
we sub-sampled as follows. For a particular ordered
list of URL’s, we refer to the “index” of a particular
URL to mean its position in the list—the first URL
has index one, and so forth. Consider a topic node
N . We chose a “high-scoring” index h(N) uniformly

from the indices between 1 and 3, and a “low-scoring”
index l(N) uniformly from the indices between 4 and
25. We then extracted the two hub (resp. author-
ity) pages at indices h(N) and l(N) in the list of
hubs (resp. authorities), from the taxonomy con-
structed using naive queries. This resulted in four
URL’s. We performed the same extraction for topic
node N in the advanced text and example modes of
creation as well, resulting in a total of 12 URL’s.
These samples contained some overlaps however; in
all the mean number of distinct URL’s extracted per
node was about 10.2. From classical statistics, the
score we compute is an unbiased estimator of the ac-
tual scores (cf. [8]).

We then asked each user to evaluate four topic
nodes from our 200, chosen randomly without re-
placement. Note that, as in Section 4.1, we do not
tell our users whether a particular URL was gener-
ated as a good hub or as a good authority. The eval-
uation methodology also followed Section 4.1, with
additional ranking options of “unranked” (the initial
value), and “unreachable.” Pages ranked “unranked”
(presumably because a user simply forgot to rank this
page) or “unreachable”, were not considered in the
ranking. All other pages were assigned scores as fol-
lows: “bad” = 0, “fair” = 1, “good” = 2, “fantastic”
= 3. When we refer to scores in the following, we
mean these values. As before, when dealing with pre-
cision, we define pages ranked “good” or “fantastic”
to be relevant.

Results and conclusion. Table 2 shows the aver-
age values over the top 25 results, broken down by
mode of creation as well as taxonomy, in both the
average score and the precision metrics. The first
conclusion, shown via our user study and the tim-
ing results of our instrumented taxonomy creation
tool, is that an ontologist armed with the paradigm
of iterative topic creation using increasingly sophisti-
cated forms of query can create a high-quality taxon-
omy with a fairly quick turnaround time. The second
high-level conclusion is that the well-known benefits
of relevance feedback appear to hold in the domain of
hyperlinked document search. As a tertiary conclu-
sion, we show that, at least in the context of taxon-

12



omy creation, the traditional “advanced query” syn-
tax used by search engines does not provide signifi-
cantly better results than more naive queries. This
might provide partial explanation for user dissatisfac-
tion with “advanced search” functions in most search
engines.

An examination of the nodes shows that top-
ics in the personal taxonomy tend to be nar-
rower in focus. For instance, some of the nodes
are FOCS/STOC, SIGMOD, WWW, Collaborative

Filtering, Latent Semantic Indexing, Phrase

Extraction, Kerberos, Smartcards. There are
far fewer pages about, for instance, the FOCS/STOC
(theory) conferences than about the sport of ice
hockey. Interestingly, in this focused context we see
the largest difference between modes: exemplifica-
tion improved performance by approximately 33%
over the purely textual approaches.

5 Conclusion

In this chapter, we have given a detailed descrip-
tion of the CLEVER search system. The system in-
cludes a broad set of extensions to the underlying
HITS framework in which it was developed. We mo-
tivated and described these extensions in detail, and
then provided results from two user studies to show
that the resulting system gives high-quality results
on real-world web ranking problems. From these
results, we draw two conclusions. First, link-based
ranking schemes can provide dramatic improvements
over purely content-based techniques for web data.
And second, such link-based schemes are most effec-
tive when augmented with textual information.

References

[1] The Altavista Search Engine,
http://www.altavista.com

[2] K. Bharat and M.R. Henzinger. Improved algo-
rithms for topic distillation in hypertext environ-
ments, Proc. 21st ACM SIGIR, 1998.

[3] S. Brin and L. Page. The anatomy of a large scale
hypertextual Web search engine, Proc. 7th WWW,
1998.

[4] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg,
P. Raghavan, and S. Rajagopalan. Automatic re-
source compilation by analyzing hyperlink struc-
ture and associated text, Proc. 7th WWW, 1998.

[5] S. Chakrabarti, B. Dom, Ravi Kumar, P. Ragha-
van, S. Rajagopalan, and A. Tomkins. Exper-
iments in topic distillation. Proc. ACM SIGIR

Workshop on Hypertext Information Retrieval,
pages 13–21, 1998.

[6] J. Dean and M. Henzinger. Finding related pages
on the Web, Proc. 8th WWW, 1999.

[7] E. Efthimiadis. Interactive Query expansion and

Relevance Feedback for Document Retrieval Sys-

tems. Ph. D. Thesis, City University, London, UK,
1992.

[8] W. Feller. An Introduction to Probability Theory

and its Applications. John-Wiley, 1968.

[9] C. Golub and C. Van Loan. Matrix Computations.
Johns Hopkins University Press, 1989.

[10] The Google Search Engine,
http://www.google.com

[11] J. Kleinberg. Authoritative sources in a hyper-
linked environment. Journal of the ACM, 46, 1998.

[12] A. Ng, A. Zheng, and M. Jordan. Stable Algo-
rithms for Link Analysis. Proc. ACM SIGIR, 2001.

[13] J. Koenemann. Supporting interactive information
retrieval through relevance feedback, Proc. ACM

SIGCHI, 1996.

[14] R. Lempel and S. Moran. The stochastic approach
for link-structure analysis (SALSA) and the TKC
effect. Proc. 9th WWW, 2000.

[15] Y. Maarek and F. Smadja. Full Text Indexing
Based on Lexical Relations. Proc. ACM SIGIR,
1989.

13



Taxonomy Advanced Exemplary Naive Advanced Exemplary
secs. secs. Avg. Score Prec. Avg. Score Prec. Avg. Score Prec.

Science 108.0 119.8 1.61 0.55 1.53 0.52 1.63 0.56
Recreation 192.4 239.6 1.64 0.61 1.68 0.64 1.70 0.63
Personal 157.5 214.0 1.03 0.30 0.91 0.31 1.41 0.48

Government 270.4 222.4 1.45 0.51 1.44 0.50 1.42 0.48

Table 2: Average construction time per node and average score, precision of top 25 hubs and authorities, by
taxonomy.

[16] J. Pitkow and P. Pirolli. Life, death, and law-
fulness on the electronic frontier. Proc. ACM

SIGCHI, 1997.

[17] P. Pirolli, J. Pitkow, and R. Rao. Silk from a sow’s
ear: Extracting usable structures from the Web.
Proc. ACM SIGCHI, 1996.

[18] G. Salton and C. Buckley. Improving re-
trieval performance by relevance feedback. JASIS,
41(4):288–297, 1990.

[19] A. Broder, S. Glassman, M. Manasse, and G.
Zweig. Syntactic Clustering of the Web. Proc. 6th

WWW, 1997.

[20] C.J. van Rijsbergen. Information Retrieval. But-
terworths, 1979.

[21] M. Toyoda and M. Kitsuregawa. A Web Commu-
nity Chart for Navigating Related Communities.
Proc. 10th WWW, 2001.

[22] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. On Semi-Automated Web Taxonomy
Construction. Proc. ACM WEBDB, 2001.

[23] Yahoo! http://www.yahoo.com

14


