
Web and So
ial NetworksRavi Kumar� Prabhakar Raghavany Sridhar Rajagopalan� Andrew Tomkins�Abstra
tThe study of the Web as a network has resulted in a better understanding of the so
iologyof Web 
ontent 
reation. This has paid o� in higher pre
ision sear
h engines and more e�e
tivealgorithms for data mining the Web. This paper reviews the resear
h in this area in the broader
ontext of so
ial networks.1 Introdu
tionThe diverse authorship, style and distributed 
ontent 
reation on the Web are in sharp 
ontrast tothe more 
ontrolled and homogeneous domain of 
lassi
al information retrieval. Link analysis hasled to te
hniques that have dramati
ally improved the sear
h experien
e on the Web. This in turnhas spawned resear
h into the Web's link stru
ture in its own right, ranging from graph-theoreti
studies (degree sequen
es, 
onne
tivity) to 
ommunity mining and knowledge management.Modern so
ial network theory is built on the work of Stanley Milgram [19℄. In 1967, Milgram
ondu
ted experiments in whi
h ea
h of several subje
ts in Omaha, Nebraska had to 
onvey a letterto his asso
iate in Boston. They 
ould only send the letter to someone they knew on a �rst-namebasis, who in turn had to forward to people they knew on a �rst-name basis with the obje
tive ofgetting the letter to Milgram's asso
iate with the smallest number of \hops". Milgram found thatthe median path length taken by su

essfully delivered letters was six, leading to the folklore thatany two people in the United States are linked in a so
ial network with \six degrees of separation."In this paper, we review two link analysis algorithms and two stru
tural dis
overies about Webtopology. There is a strong stru
tural similarity between the Web as a network and so
ial networks.It is our belief that these similarities will lead to progress in knowledge management. We presenta number of resear
h 
hallenges that must be addressed in this arena.Notation. We view the Web as a dire
ted graph, with nodes (i.e., the pages) and dire
ted edges(i.e., links) between 
ertain pairs of the nodes. The notation q ! p denotes that page q links topage p. We say p is an out-link of q and q is an in-link of p. The adja
en
y matrix A of a graph ofn nodes is an n� n matrix with A(p; q) = 1 if and only if p! q. The number of pages that pointto p is 
alled the in-degree of p and is denoted indeg(p) and the number of pages that p points tois 
alled its out-degree, denoted by outdeg(p).�IBM Almaden Resear
h Center, 650 Harry Road, San Jose, CA 95120, USA. fravi, sridhar,tomkinsg�almaden.ibm.
omyVerity, In
., 892 Ross Drive, Sunnyvale, CA 94089, USA. pragh�verity.
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2 Link analysis of the WebText-based sear
h engines often fun
tion rather poorly on the Web | the sheer volume of dataand the low signal-to-noise ratio make them undesirable for lo
ating high-quality pages for a giventopi
. Text-based engines do not exploit the annotative power of links. Spe
i�
ally, when theauthor of a Web page links to another, it represents an impli
it \endorsement" of the page beinglinked to. From the 
olle
tive judgment in the set of su
h endorsements, a sear
h system 
an distillhighly relevant 
ontent from the Web. Kleinberg [16℄ and Brin and Page [6℄ pioneered the use oflink information in devising sear
h algorithms for the Web.The HITS algorithm. HITS [16℄ identi�es two kinds of pages on the Web | authorities, whi
hare pages that are authoritative sour
es of information for the query and hubs, whi
h are resour
elists 
ontaining pointers to a list of resour
es on the topi
. This relationship is mutually reinfor
ing| good hubs point to good authorities and vi
e versa. The HITS algorithm formalizes this into aniterative 
omputation, using a sampling phase and a weight-propagation phase. The sampling phaseuses the query terms to 
olle
t a root set of pages from a text-based sear
h engine and expandsthis root set into a base set by in
luding all pages that are linked to by pages in the root set, andall pages that link to a page in the root set. The idea is that even though the root set might not
ontain the best pages for the query, the base set will.The weight-propagation phase works with the subgraph indu
ed by the base set. The algorithmassigns a non-negative authority weight ap and a non-negative hub weight hp with ea
h page p inthe base set, both initialized to 1. The update rule for authority and hub weights is:ap = Xq:q!phq;hp = Xq:p!q aq: (1)The algorithm iteratively updates these weights by repeating the above 
omputations. Followingthe iterations, the authorities (resp. hubs) are presented by the ordering of the authority (resp.hub) values.The authority (resp. hub) values for all the pages form the ve
tors ~a (resp. ~h). The update rulestranslate to ~a AT~h and ~h A~a. We thus have the linear system ~a (ATA)~a and ~h (AAT )~h.The authority (resp. hub) ve
tor is thus the prin
ipal eigenve
tor of the matrix ATA (resp. AAT ).The update rules in Equation (1) turn out to be power iterations for 
omputing these eigenve
tors.(See the book by Golub and Van Loan [15℄ for ba
kground on eigenve
tors and power iteration.)Two points are noteworthy here. Sin
e the power iteration 
onverges to the prin
ipal eigenve
torfor any \non-degenerate" 
hoi
e of the initial ve
tor, our initial 
hoi
e for the authority and hubvalues is in
onsequential. Se
ondly, although the 
onvergen
e of eigenve
tor values is guaranteed,we are only interested in the ordering of these values and not their numeri
al values per se.Extensions to HITS. HITS sometimes has a tenden
y to generalize or drift to a nearby topi
,espe
ially when there are hubs that are quite diverse in the topi
s they 
over. To address theseand other issues, a number of resear
hers [4, 8, 9℄ introdu
ed many variants to the basi
 HITSalgorithm. Chakrabarti et al. [8℄ use the text surrounding a hyperlink (
alled the an
hortext): thistext is mat
hed against the query term to obtain a weighted version of Equation (1). In furtherwork, Chakrabarti et al. [9℄ use the tags on a large hub page to break it into smaller hublets so thatthe links within a hublet stay topi
ally fo
used. Additionally, if several pages from a single domain2



parti
ipate as hubs, their weights are s
aled down so as to prevent a single site from be
omingdominant. These heuristi
s, while retaining the 
lean mathemati
al properties of HITS (in termsof 
onvergen
e, et
.), exploit the 
ontent of a page. Bharat and Henzinger [4℄ presented a numberof di�erent extensions to the basi
 HITS algorithm, substantiating the improvements via a userstudy. Some of their heuristi
 improvements in
lude: weighting pages based on how similar theyare to a given query topi
 and averaging the 
ontribution of multiple links from any given site toa spe
i�
 page.Pagerank. A di�erent way of utilizing link information was proposed by Brin and Page [6℄; thishas be
ome the basis of the su

essful Web sear
h engine Google (google.
om). Here a query-independent ranking (
alled the pagerank) of all pages is obtained via link analysis. The pagerankof a page p is the limiting fra
tion of the time spent at p by the following pro
ess: at ea
h stepwith probability � the pro
ess jumps to a random page on the Web and with probability (1 � �)it follows a random out-link (if any present) from the 
urrent page. Typi
ally, � is 
hosen to bearound 0:15. The pagerank of a page is given by its entry in the prin
ipal eigenve
tor of the matrix(1� �)AT + �1, where 1 is the matrix of all ones. The main advantage of pagerank 
omes from thefa
t that it is a stati
 ordering and so, given a query term, the pages that 
ontain the query term
an be retrieved using a traditional text-based indexer and displayed in the pagerank order. Whilepagerank is reportedly a 
omponent in Google, it is not the only one; many other 
lever heuristi
sgo into the making of a su

essful 
ommer
ial sear
h engine.Salsa. Salsa[18℄ is a variant on HITS. De�ne two matri
es, W = [wij ℄ where wij = aij=outdeg(i),andW 0 = [w0ij ℄ where w0ij = aji=indeg(j). Here A = [aij ℄ is the adja
en
y matrix used in HITS. It iseasily veri�ed, that bothW andW 0 are sto
hasti
, and thus represent Markov 
hains. Consequently,H = WW 0 and A = W 0W too are sto
hasti
 (produ
ts of sto
hasti
 matri
es remain sto
hasti
).Salsa uses the prin
ipal (left) eigenve
tors of H and A to rank pages as hubs and authoritiesrespe
tively.Borodin et al. [5℄ provide a 
omparative study of these algorithms and other variants.3 Communities on the WebA 
ommunity on the Web is a 
olle
tion of Web pages that deal with a 
ommon topi
, presumably
reated by people with overlapping interests. Many 
ommunities are expli
itly available on theWeb | for example, newsgroups, email groups and mailing lists, Web rings, personal Web pagesin portals, et
. On the other hand, many more are impli
it. However, be
ause of their evolving |and in many 
ases short-lived | nature, it is a formidable task to keep tra
k of these 
ommunitiesmanually. A method for extra
ting these impli
it 
ommunities automati
ally was proposed by [17℄.The su

ess of HITS suggests that 
ommunities 
ontain at their 
ore a dense pattern of linkagefrom hubs to authorities. This motivates the identi�
ation of dense bipartite graphs as signaturesof Web 
ommunities. By dire
ted dense bipartite graph we mean a graph whose nodes 
an bepartitioned into two sets A and B su
h that most potential links dire
ted from a node in A to anode in B are in fa
t present. Given this 
hara
terization of 
ommunities, many of them 
an beexpe
ted to 
ontain smaller bipartite subgraphs (
alled 
ores) that are in fa
t 
omplete bipartitegraphs: ea
h node in A has a link to ea
h node in B. The idea is to enumerate the 
ores and growea
h 
ore to the 
ommunity it represents, using algorithms similar to those in Se
tion 2.3



The te
hnique used for enumerating su
h 
ores is 
alled trawling. The main 
hallenge is theeÆ
ient enumeration of 
ores. Naive enumeration is infeasible: 
onsider the example of examiningevery set of six Web pages to see whether three of them all point to the other three (3 � 3 
ores).Even on a subset of the Web with 100 million pages, this would require the examination of over1040 subsets. The key then is to eÆ
iently prune away most of these subsets from 
ontention. Thepaper [17℄ des
ribes a family of su
h pruning te
hniques and show that all 
ores with up to twentyWeb pages 
an be enumerated exhaustively on a standard desktop PC in about 3 days of runningtime. They used a 
rawl from Alexa (www.alexa.
om) 
ir
a 1997.The experiment yielded about 130,000 3 � 3 
ores. Were these linkage patterns 
oin
idental?Manual inspe
tion of a random sample of about 400 
ommunities suggested otherwise: fewer than5% of the 
ommunities dis
overed la
ked a unifying topi
. Moreover, about 25% of the 
ommunitieswere not represented in Yahoo!, even in 1999. Of those that do appear in Yahoo!, many appearat as deep as the sixth level in the Yahoo! topi
 tree. Some sample 
ommunities identi�ed by thestudy in
lude: the 
ommunity of people interested in Hekiru Shiina, a Japanese pop singer; the
ommunity of people 
on
erned with oil spills o� the 
oast of Japan; and the 
ommunity of Turkishstudent organizations in the U.S. These studies lead to believe that trawling a 
urrent 
opy of theWeb will result in the dis
overy of many more 
ommunities that will be
ome expli
itly re
ognizedin the future.In a more re
ent work [14℄, a slightly di�erent notion of 
ommunities was de�ned. In this work, a
ommunity is a 
olle
tion of Web pages that have more links to the members of the 
ommunity thanto non-members. Members of a 
ommunity 
an be found using maximum 
ow between a sour
e(
onsisting of known members of the 
ommunity) and a sink (
onsisting of known non-members ofthe 
ommunity). Unfortunately, this approa
h is not fully automati
 sin
e it requires spe
ifyingthe sour
e and sink expli
itly. Moreover, unlike trawling, it is un
lear how to s
ale these algorithmsfor the entire Web.4 Conne
tivity and the diameter of the WebBroder et al. [7℄ aimed to understand the 
onne
tivity properties of the Web | is the Web well-
onne
ted or does the Web break into small pie
es? Is it possible to rea
h any page from anyother page by just following hyperlinks? These questions re
eived impetus from work of Barabasiet al. [2, 3℄ suggesting that the diameter of the Web digraph is 19.Broder et al. �rst studied a 
rawl of the Web from Altavista 
onsisting of over 200 millionpages and 1.5 billion links, subsequently validating their �ndings on larger 
rawls. The results fromthis paper 
an be 
lassi�ed into three 
ategories | degree distributions, the bowtie stru
ture, anddistan
e/diameter studies of the Web. Several earlier studies on small portions of the Web demon-strated a power-law behavior for in-degree distributions [17, 3℄. The experiments in [7℄ 
on�rm thisphenomenon on a mu
h larger s
ale. The power-law exponent of the in-degree distribution wasdetermined to be 2:1 and has remained 
onsistent for over three years. The out-degree distributionalso 
onforms to a power-law, albeit in a less striking manner.Conne
tivity analysis of the Web graph breaks it into strongly and weakly 
onne
ted 
omponents.Re
all that a set of Web pages forms a strongly 
onne
ted 
omponent if there is a path followinghyperlinks from any page in the set to any other. A set of Web pages is weakly 
onne
ted undera similar de�nition, ex
ept that hyperlinks 
an be followed in the forward or ba
kward dire
tion.4
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Figure 1: The bowtie stru
ture of the Web.What are the strongly and weakly 
onne
ted 
omponents of the Web graph? The analysis revealsthe following bowtie stru
ture (Figure 1), showing that the Web breaks into four natural pie
es.The �rst is 
alled the SCC, whose every page is rea
hable from every other page in the SCC byfollowing links. This is the largest strongly 
onne
ted 
omponent of the Web graph. The SCCis a 
olle
tion of the most valuable resour
es on the Web. Most portals, university home pages,
orporations, and 
ompanies 
an be presumed to be present in the SCC. The se
ond pie
e is 
alledIN and represents those pages that 
an rea
h the SCC, but not vi
e versa. This 
omponent may
onsist of sites that are fairly new to the Web and point to pages in the SCC, but their own identityis yet unknown to the rest of the Web. The third pie
e is 
alled OUT and in
ludes those pagesthat 
an be rea
hed from the SCC, but not vi
e versa. It 
ould 
onsist of pages in 
orporate Websites that do not point ba
k to any page in the SCC. The fourth pie
e 
onsists of those pages thatdo not fall into the above 
lassi�
ation. Some of them are a 
onsequen
e of dead links.In the 
rawl examined by Broder et al. these four pie
es are of roughly the same size; this
ould very well be a strange 
oin
iden
e as the sizes are in many ways artifa
ts of 
rawling poli
ies.The exa
t relative sizes of the 
omponents is not the most interesting aspe
t of this �nding; ratherthe important message out of this study is that the stru
ture of the Web graph is not one of thefollowing two:(1) A well-
onne
ted graph where given any two pages, one 
ould 
li
k from one page and getto the other.(2) A fragmented graph where portions of the graph are well-
onne
ted but these well-
onne
tedportions are dis
onne
ted from ea
h other.We now argue why the Web 
annot be one of the above. By the way in whi
h the Web wasde
omposed into four pie
es, given a pair (p; q) of pages, the only situation where q 
an be rea
hedfrom p is when both p is in IN or SCC and q is in SCC or OUT. Sin
e the sizes of IN and OUTare non-trivial, this shows that for roughly 3=4 of pairs p; q, page q is not rea
hable from p. Thisdispels possibility (1). Moreover, this is in 
ontrast with earlier studies [2℄ whi
h predi
ted thatthe Web is well-
onne
ted by interpolating 
onne
tivity results from a small set of pages 
olle
ted5



from a single site.On the other hand a large fra
tion of pages (1=4 in the study) are in the SCC. Moreover, these
ond largest strongly 
onne
ted 
omponent turns out to be two orders of magnitude smaller thanthe SCC. This suggests that the Web does not break in regions of well-
onne
ted 
omponents.Rather, there is a 
entral SCC that holds most of the Web together. This dispels possibility (2).An o�-shoot of this study was to analyze the diameter of the Web. The diameter of the Web,in stri
t graph-theoreti
 terms, is in�nite as there are (in fa
t, many) pairs of pages in whi
h one
annot be rea
hed from the other. We need a modi�ed notion of diameter, 
alled the average
onne
ted distan
e, whi
h is the average length of the path from page p to page q, 
onditioned uponq being rea
hable from p. From the study, the average 
onne
ted distan
e of the Web is roughly16, whi
h means that if there is a path from p to q, then on average 16 
li
ks are needed to go fromp to q. If we ignore the dire
tions of the links (i.e., if one has the ability to surf to those pages thatpoint to a given page { as apparently in the 
al
ulation of [2℄), then the average 
onne
ted distan
eis only seven. These �ndings suggest that (under some dramati
 simpli�
ations) the Web exhibitsa \small-world" behavior.5 Fra
tal nature of the WebSeveral earlier studies of the Web graph at di�erent s
ales [2, 1, 17, 7℄ showed remarkable similaritiesin various measurements of the Web graph. These observations lead to the natural question: towhat extent is the Web a fra
tal? In other words, do subgraphs of the Web look like \mini Webs"?These and related questions were addressed in a re
ent paper [11℄. The subgraphs studied in
lude alarge internet 
rawl; various subgraphs 
onsisting of about 10% of the sites in the original 
rawl; 100Web sites from the 
rawl ea
h 
ontaining at least 10,000 pages; ten graphs, ea
h 
onsisting of everypage 
ontaining a set of keywords (in whi
h the ten keyword sets represent �ve broad topi
s and�ve sub-topi
s of the broad topi
s); a set of pages 
ontaining geographi
al referen
es (e.g., phonenumbers, zip 
odes, 
ity names, et
.) to lo
ations in the western United States; a graph representingthe 
onne
tivity of Web sites (rather than Web pages); and a 
rawl of the IBM intranet. The graphproperties studied in
lude the in- and out-degree distributions, the bowtie stru
ture (Se
tion 4),distribution of 
onne
ted 
omponents, and the number of 
ommunities (Se
tion 3).The main �nding is that self-similarity in the Web is both pervasive and robust. It is pervasivein that so long as the sli
e of the Web 
onsidered is meaningful, the sli
e 
an be thought of as a\mini Web" | its graph-theoreti
 properties are very similar to that of the entire Web. It is robustin that the parameters 
orresponding to various properties do not 
hange signi�
antly with thesli
e 
onsidered. For instan
e, for many of the subgraphs, the power-law exponent of the in-degreeturned out to be 
lose to 2.1 (see Figure 2 for a log-log plot of the in-degree distribution for �ve ofthe \mini Webs").Based on this experimental �nding, one 
an derive a graph-theoreti
 interpretation leading toa natural hierar
hi
al 
hara
terization of the graph stru
ture of the Web. A

ording to this,
olle
tions of Web pages that share a 
ommon trait (for example, all the Web pages that deal withgolf) appear similar to the Web as a whole. These \mini Webs" are 
onne
ted by a navigationalba
kbone whi
h not only ties together the 
olle
tions of pages, but also ties together the manydi�erent and overlapping \mini Webs". The user navigates through the Web by going from one\mini Web" to the other uses the navigational ba
kbone.6
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Figure 2: Indegree distribution for subgraph of a 
rawl (Stream1), golf-related pages (Golf), ge-ographi
ally related pages (Geo.Western), IBM intranet (IBM.intranet), and pages 
orrespondingto a small 
orporation (Subdomain1).Self-similarity is pervasive in so
ial networks. While self-similarity on theWeb has been observedin other 
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tal natureof the Web in a graph-theoreti
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