
Efficient Discovery of Authoritative Resources

Ravi Kumar #1, Kevin Lang #1, Cameron Marlow #2, Andrew Tomkins #1
Yahoo! Research, 701 First Ave., Sunnyvale, CA 94089, USA

1{ravikumar,langk,atomkins}@yahoo-inc.com
2cameron@media.mit.edu

Abstract- Given a dynamic corpus whose content and atten-
tion are changing on a daily basis, is it possible to collect and
maintain the high-quality resources with a minimal investment?
We address two problems that arise from this question for hy-
perlinked corpora such as web pages or blogs: how to efficiently
discover the correct set of authoritative resources given a fixed
network, and how to track these resources over time as new
entrants arrive, old standbys depart, and existing participants
change roles.

I. INTRODUCTION
We study the feasibility of gathering and maintaining highly

authoritative content, at a scale several orders of magnitude
smaller than the entire corpus. This approach is especially ap-
propriate when the long tail of little-accessed content does not
provide sufficient value to justify gathering and maintaining it.

The abstraction we consider is the following: given a
dynamic corpus where content and attention is changing on
a daily basis, is it possible to collect and maintain the high-
quality resources with a minimal investment? We address
two problems arising from this question, in the context of a
hyperlinked corpus such as web pages or blogs.

Static: How to efficiently discover the correct set of author-
itative resources given a fixed network?

Dynamic: How to track authoritative resources over time
as new entrants arrive, old standbys depart, and existing
participants change roles?
More specifically, we focus on a directed graph setting,

where the resources are described by nodes and hyperlinks
by edges. We consider various models of accessing this graph,
namely, sampling nodes at random, performing a random walk,
or crawling. Our measurement of authoritativeness is indegree.
In the static setting, we propose a spectrum of algorithms,
ranging from idealistic to realistic. We conduct extensive
experiments on a blog data set and show that our realistic al-
gorithms are very effective in identifying authoritative sources.
Furthermore, they are practical and are highly competitive with
their idealistic counterparts in terms of performance. Next,
we turn to the dynamic setting, where the graph changes
over time. In this setting we investigate the algorithms from
the static case, augmented with several recrawl policies. Our
experiments on another blog data set continuously crawled
over time once again shows that it is possible to devise
practical algorithms that are effective in tracking authoritative
nodes in this graph.
Related work. Web crawling is a well-studied topic, and can
be roughly subdivided into the problems of the discovery

of new content [1] and refresh of updated content from
previously visited resources. In the process of exploring the
web, different strategies have been applied to the problem of
ordering unvisited content; some have focused on the relative
importance of topics [2], [3] while others have used the
perceived rank [4], [5]. To effectively refresh updated pages
some have modeled the change rates of individual pages on
the web [6], [7], [8] while others have seen this as a problem
of keeping a given set of content up-to-date [9], [10], [11],
[12]. These approaches aim to characterize the web at large,
attending to comprehensiveness and coverage; we, instead,
focus on finding and tracking the most important content.
The process of identifying top resources in a web context

is also analogous to the task of identifying and threading
together important topics in a stream of information. Much
attention has been paid to this problem through the iterative
improvements on a fixed corpora on two sub-problems: topic
detection, or the identification of emerging, related concepts
and event tracking, or tracking subsequent events given an
initial set [13], [14]. Similar efforts have also been made to
identify bursty events in streams of data [15].

II. DISCOVERY IN STATIC GRAPHS

In this section we discuss the basic problem of discovering
authoritative nodes in a fixed graph. We present several algo-
rithms for this problem and analyze the performance of our
algorithms on a large blog data set.

Problem. Let G = (V, E) be a directed graph with node set
V and edge set E = {(u, v) u, v C V}. The inlinks of a
node u are the edges { (v, u) (v, u) C E}; the size of this
set is the indegree of u, denoted id(u). The outlinks of a node
u are the edges {(U, v) (u, v) C E}; the size of this set
is the outdegree of a, denoted od(u). We will define a node
to be "authoritative" if it has a high indegree; we note that
indegree is easy to interpret and compute, and it cannot be
easily changed by the node itself.
The problem of finding high-quality nodes in a graph can be

stated as follows: given a directed graph G and a target number
k, find the k most authoritative nodes. Exactly finding that
subset K will be difficult, so instead we ask for an approximate
subset C c V, k < C «< lV to maximize the quantity
CcnK 1/ K l, called the crawl performance. A stricter measure
that might be more relevant in real applications is the rank
performance, which is given by KH nK 1/1K l, where KH C
C with KH = k is the output of the algorithm.

978-1-4244-1837-4/08/$25.00 (© 2008 IEEE 1495 ICDE 2008

Crawl Performance Curves for Original Blogs Digraph Rank Perfomance Curves for Original Blogs Digraph
2000 2000

1900 A j. 190 0 B
1800-_ ; O 1800-

BF 1700-_ and 1700rperformance curves
O 1600 _ g;;D 00 . X . . U ~~~~~ ~~~~ ~~1600 _< 000

So500f algorithms 1500m a s Cfaw
oth400a we 400wc many n f K. For

E300' nS0< 1300 ;. ;i,crawl-base algorith,rawl-GAI of n Sample-rt1200 - ':XCrw-I , 1200 _ ,' ,7 Sample-]
rroo ;, , , ; Sample-10 ro Crawl |GAI

0 0000 20000 30000 40000 50000 60000 70000 80000 0 10000 20000 30000 40000 50000 60000 70000 80000ntfbor nodes crawV dot ca T n odescta tad

Fig. 1. Crawl and rank performance curves

Several of our algorithms will maintain a set C of crawled
nodes that we hope will contain many nodes from K. For
crawl-based algorithms, a subset of nodes of special interest is
the frontier F C V of the crawl. These are nodes that are one
outlink away from the crawled set but not themselves crawled
yet. While the algorithm does not know the outdegree of a
node u C F in the frontier, it can obtain the apparent indegree
of u based on its knowledge of the graph so far; we denote
this by id(u).
Algorithms. We first present two sampling-based algorithms,
which are unrealistic since they assume complete global
knowledge of the degrees of the nodes in G. The algorithms
Sample-I, Sample-1O correspond to random sampling with
probability of choosing u proportional to the indegree id(u),
and the sum id(u) + od(u), respectively. Next we present
two realistic crawling algorithms which maintain a set of the
nodes that have already been crawled along with a frontier for
exploration. They also maintain apparent indegrees for nodes
in the frontier. At each step the algorithm must decide which
node in the frontier must be crawled next. In Crawl-Al the
next node to crawl is a random frontier node, with probability
proportional to apparent indegree. In the greedier Crawl-GAI
method, the next node to crawl is the frontier node u C F
with the highest apparent indegree id(u).
Experimental results. Our main data source comes from a
weblog corpus collected from May 16th to June 21st, 2005
for the MIT Weblog Survey [16]. These blogs were discov-
ered using the Blo.gs ping service that blog software uses
to automatically notify subscribers when a given weblog is
updated. Over the course of the 37 day period, 15 million links
were extracted from about 1 million observed weblogs. These
data were cleaned of outliers and anomalies according to [16].
Subsequently, the graph contains 343,743 nodes and 1,571,772
directed edges. For all of the crawl-based algorithms, we used
a fixed arbitrarily chosen source node uo that belongs to the
graph's SCC.

In Figure 1-A we plot the crawl performance of several
algorithms. We have defined the target set K to be the 2000
nodes with the highest indegree. The plot's x-axis is the
number of nodes crawled so far, while the y-axis is the number
of nodes in K that have been visited. Sample-I works better
than the other sampling algorithms (mostly not shown) which
is not surprising since it is directly sampling on indegree (our
measure of authoritativeness). Interestingly, Crawl-GAI and

Crawl-Al find high-indegree nodes even faster than Sample-I,
at least at the beginning.
As one might expect, scores for the stricter rank perfor-

mance measure (Figure 1-B) are lower than crawl performance
scores. (Figure 1-A). Also, the relative order of the algorithms
has nearly reversed. In particularly, the greedy Crawl-GAI
algorithm is the worst for this measure. Apparently pulling
high indegree nodes into the pool too rapidly causes apparent
indegree to become a bad approximation to true indegree.
There is an exploration-exploitation tradeoff here that will
be discussed more in the next section. [Also, we note that
the longer version of this paper contains more algorithms and
many more plots].

III. TRACKING IN DYNAMIC GRAPHS
In this section we expand our scope to include time graphs

[17], in which each edge arrives at a particular point in time.
We will define a time-varying target set of popular nodes that
our algorithms must track.
Problem. A time graph G = (V, E) is a set of nodes V, with
a set of timestamped directed edges E, where (U, v, t) C E
represents an edge from u to v arriving at time t. Let w be
a fixed time window. The induced subgraph Gt, at time to is
defined as Gt, = (V,EEt), where Et,) {(u, v,t C E) t C
[to -w, to] }. The outlinks of a node u at time to are given by
out(u,to) = {(u, v,t) C Et.}. The target k nodes to track at
time t, denoted Kt, are simply the top k nodes of Gt ranked
by decreasing indegree. We use w = 7 days and k = 500 in
our experiments.
When an algorithm performs a crawl of node u at time to, it

sees out(u, to) as a result. At this time, the algorithm is said to
have crawled u. Let Ct be the set of all nodes crawled by time
t and Ft be the frontier at time t. As before, our primary figure
of merit is crawl performance, defined to be |Ct n Ktl/ Kt
at time t. In some cases, we may also study the discovery
performance at time t, which is given by (CtUFt) nKt 1/1Kt .

This measure shows how effectively the algorithm has learned
about target nodes, even if it has not yet selected them for
crawling.
Algorithms. Dynamic algorithms, in addition to deciding
which node to explore next, must also interleave recrawls
of already-crawled nodes in order to harvest newly-arriving
links. We distinguish between an expansion procedure, as
employed by a static algorithm, and a recrawl procedure for
selecting already-crawled nodes to revisit. We assume that a
dynamic algorithm will interleave calls to these two procedures
at random with some probability fixed in advance (taken to be
0.5 in our experiments).
The yield of a recrawl event is define as the number of

links that were not present during the prior crawl of that
node, divided by the time since the prior crawl. Each node
that has been crawled at least twice has a yield score defined
by the yield of the most recent crawl. Link score is defined
analogously to yield, but takes into account the perceived
indegree of the new links on a node: the link score of a

1496

Fig. 2. Crawl/discovery performances and yield.

recrawl of a node is the sum over each outlink not present
during the prior crawl of the number of inlinks seen so far to
the destination. Thus, link score prefers nodes that discover
"high-quality" nodes, according to indegree. The link score of
a node is then the link score of the most recent recrawl.

Section II introduced a variety of expansion procedures of
which we will study the following three: omniscient algorithm
Sample-U and realistic algorithms Crawl-GAI, Crawl-Al. We
introduce the following recrawl policies. In policy U, we pick
a node for recrawl uniformly at random and in policy OR, we
pick a node with probability proportional to the total outlinks
seen at this node to date. In policy YR, we select the node
at random with probability proportional to yield score. Policy
YRU implements a uniform mixture of YR and U; this helps
to avoid the bootstrapping problem to estimate yield, a
node must be crawled at least twice. Policy LDU is a uniform
mixture of policy U and the policy of picking the node with
highest link score.

Experimental results. We report on a series of experiments on
dynamic data. The data used for this analysis is made available
as part of the first ICWSM Conference on Weblogs and Social
Media, and consists of about 14M posts from 3M weblogs,
representing about 1OG compressed. We extracted all links
from the data, resulting in 340K links over a period of 24
days. Because the content consists just of blog entries, this
data does not contain any template material, blogrolls, or other
links beyond what occurs in the entry itself. Thus, the average
degree in the subgraph induced by weblogs in the crawl is
quite low, but the link quality is high. Each link is annotated
with a timestamp given in seconds.

Figure 2-A shows the results for crawl performance with
regular lines, and the results for discovery performance are
also shown, using the same colors, with hash marks added.
The Crawl-GAI expansion algorithm with the OR recrawl
algorithm performs well in both cases. Surprisingly, the more
sophisticated algorithms based on yield and link score do not
perform better.

Figure 2-B shows the effectiveness of the algorithm at
identifying target nodes, compared to selecting random nodes
from the graph. The smooth curves show the probability that
a uniformly-chosen crawled node is a target node, divided
by the probability that a uniformly-chosen node from the
graph is a target node. The hashed lines show the probability

that a uniformly-chosen node from Ct U Ft is a target node,
divided by the probability that a uniformly-chosen node from
the graph is a target node. The union of crawled nodes and
frontier nodes are more than 20 times more likely to be target
nodes than random nodes from the graph, and the ratio for
crawled nodes is even higher, reaching almost 50 for the best
algorithm, which is a realistic algorithm (expand using Crawl-
GAI, recrawl using OR). The decline in quality of the frontier
for certain algorithms comes about late in the crawl because
nodes with large numbers of outlinks to new but low-quality
content are discovered. We may also observe from this graph
that the algorithm effectively learns from its experiences, doing
a better job of distinguishing high-quality nodes from low-
quality nodes as the graph grows.

IV. CONCLUSIONS
We presented a problem exposing the tradeoff between

coverage and resources in the case of hyperlinked media. We
evaluated the performance of many expansion techniques in a
static graph and recrawl methods in a dynamic graph. Our best
algorithms Crawl-GAI and Crawl-Al for expansion and U
and YDU for recrawl performed surprisingly well, often
beating those that had an omniscient advantage.

REFERENCES
[1] A. Dasgupta, A. Ghosh, R. Kumar, C. Olston, S. Pandey, and

A. Tomkins, "The discoverability of the Web," in Proc. 16th WWW,
2007, pp. 421-430.

[2] S. Chakrabarti, M. van den Berg, and B. Dom, "Focused crawling: a new
approach to topic-specific web resource discovery," Computer Networks,
vol. 31, pp. 1623-1640, 1999.

[3] B. Pinkerton, "Finding what people want: Experiences with the we-
bcrawler," in Proc. 1st WWW, 1994.

[4] S. Abiteboul, M. Preda, and G. Cobena, "Adaptive on-line page impor-
tance computation," in Proc. 12th WWW, 2003, pp. 280-290.

[5] P. Boldi, M. Santini, and S. Vigna, "Do your worst to make the best:
paradoxical effects in pagerank incremental computations," in Proc. 3rd
WAW, 2004, pp. 168-180.

[6] B. Brewington, G. Cybenko, R. Stata, K. Bharat, and F. Maghoul, "How
dynamic is the web?" in Proc. 9th WWW, 2000, pp. 257-276.

[7] J. Cho and H. Garcia-Molina, "The evolution of the web and implica-
tions for an incremental crawler," in Proc. VLDB, 2000, pp. 200-209.

[8] D. Fetterly, M. Manasse, M. Najork, and J. Wiener, "A large-scale
study of the evolution of web pages," Software Practice and Experience,
vol. 34, no. 2, pp. 213-237, 2004.

[9] J. Cho and H. Garcia-Molina, "Synchronizing a database to improve
freshness," SIGMOD Record, vol. 29, no. 2, pp. 117-128, 2000.

[10] J. E. Coffman, Z. Liu, and R. R. Weber, "Optimal robot scheduling,"
Journal of Scheduling, vol. 1, no. 1, 1998.

[11] S. Pandey and C. Olston, "User-centric web crawling," in Proc. 14th
WWW, 2005, pp. 401-411.

[12] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and L. Ozsen,
"Optimal crawling strategies for web search engines," in Proc. 11th
WWW, 2002, pp. 136-147.

[13] J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y Yang, "Topic
detection and tracking pilot study: Final report," in Proc. DARPA
Broadcast News Transcription and Understanding Workshop, 1998.
[Online]. Available: citeseer.ist.psu.edu/allan98topic.html

[14] J. Allan, R. Papka, and V. Lavrenko, "On-line new event detection and
tracking," in Proc. 21st SIGIR, 1998, pp. 37-45.

[15] J. Kleinberg, "Bursty and hierarchical structure in streams," DMKD,
vol. 7, no. 4, pp. 373-397, 2003.

[16] C. Marlow, "The stuctural determinants of media contagion," Ph.D.
dissertation, Massachusetts Institute of Technology, 2005.

[17] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins, "On the bursty
evolution of blogspace," World Wide Web Journal, vol. 8, no. 2, pp.
159-178, 2005.

1497

