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Abstract

Goldman and Kearns [GK91] recently introduced a
notion of the teaching dimension of a concept class.
The teaching dimension is intended to capture the
combinatorial difficulty of teaching a concept class.
We present a computational analog which allows
us to make statements about bounded-complexity
teachers and learners, and we extend the model by
incorporating trusted information. Under this ex-
tended model, we modify algorithms for learning
several expressive classes in the exact identifica-
tion model of Angluin [Ang88]. We study the re-
lationships between variants of these models, and
also touch on a relationship with distribution-free
learning.

1 INTRODUCTION

In the eight years since Valiant’s seminal paper on learnabil-
ity was published [Val84], computational learning theory has
been an active and productive field. Several different learn-
ing models have been proposed, each attempting to model a
different aspect of learning. Many of these models envision
a teacher who interacts in some way with the learner (e.g., by
providing counterexamples to hypotheses), but in virtually
all of these models the learning process is solely the respon-
sibility of the learner. The teacher is usually abstracted as an
oracle of some form, neutral at best, and often adversarial.

Driven by the notion that real-world learning is often highly
teacher-dependent, several researchers have suggested mov-
ing some of the computation from the learner to the teacher
[Nat87, CVS88, GRS89, GK91]. It is appealing to allow
some model of the cooperation that happens in, for instance,
a classroom. Goldman and Kearns [GK91] take the limit
of this process, and ask the question: What kind of teacher
would be so smart that any reasonable student would under-

stand the material at the end of the lecture? They introduce
the notion of teaching dimension, which corresponds in the
analogy above to the length of the shortest lecture a teacher
can give that will force every reasonable student to under-
stand the concept.

More precisely, in the Goldman-Kearns teaching model, a
helpful teacher provides a set of examples to a learner. The
teacher knows that the learner produces hypothesis concepts
which are consistent with the examples seen but knows noth-
ing else about the learner. The teaching dimension of a
concept class is the minimum number m such that for every
concept in the class, there exists a set of m examples consis-
tent with that concept and no other. A teacher which can find
such a set for each concept can thus teach any concept to any
consistent learner with m or fewer examples. (See [GK91]
for a formal definition).

We modify the Goldman-Kearns model in several ways. Un-
der our formulation we study teacher/learner pairs in which
the teacher chooses examples tailored to a particular learner,
rather than the Teaching Dimension paradigm in which the
teacher constructs examples that work for any consistent
learner. It is therefore meaningful to consider teacher-learner
pairs that are time-bounded, our second change to the earlier
formalism.

Finally, and perhaps most significantly, we introduce the no-
tion of teaching with trusted information. That is, we allow
the teacher to transmit a small number of bits about the target
concept, information which the learner accepts without ques-
tion. For example, the number of terms in a monotone DNF
could be a form of trusted information. With the addition of
such information some interesting concept classes, including
monotone DNF and decision lists, are easily shown to be
teachable in polynomial time.

We discuss the relative power of this model compared to
exact identification [Ang87] with and without counterexam-
ples and show that several interesting classes for which exact
identification can be achieved, including regular sets repre-
sented by DFA’s, read-once formulas, and read-once decision
trees, are teachable in our model. We also show that if our
teacher is allowed to be computationally unbounded, the set
of classes that can be taught under our model contains the
set that can be learned under exact identification with both
membership and equivalence queries. We also briefly look



at a relationship between teaching and the distribution-free
model.

2 PRELIMINARIES

A concept c is a Boolean function on an instance spaceX . We consider only finite or countable instance spaces
because our model of teaching currently considers only exact
identification of concepts. A concept class C is a set of
concepts over some instance space. A representation classR for a concept class C is a set of representations (strings) r
such that there is some mapping � of R onto C. The length
with respect to R of a concept, jcj, is the length jrj of the
shortest representation r 2 R such that �(r) = c. At times
we may refer to a concept class when the context indicates
we mean a representation class; in such cases we have in
mind any “reasonable” representation of the concept class.

An instance x is an element of the instance space. Each
instance has an associated complexity parameter referred to
as the length of the instance. A pair hx; c(x)i is called anexample of the concept c 2 C, and a set of examples is
called a teaching sequence. The c(x) portion of an example
is called its label. The length of a teaching sequence s, jsj is
the sum of the lengths of all instances in the sequence.

We wish to bound the running time of our algorithms in terms
of the complexity n of the target concept c chosen from C.
For example, for DFA’s, n could be the number of states in
the minimal DFA for the target language.

A representation class R for C is exactly identifiable if there
exists a deterministic algorithm which can, with help from
certain oracles, learn without error any concept in C. For
every concept c 2 C the algorithm must run in time polyno-
mial in jcj, in the complexity parameter n of C, and in the
length of the longest instance seen. The two most widely
studied oracles have been membership and equivalence or-
acles. A membership oracle for a target concept c when
given an instance x returns c(x). An equivalence oracle forc when given the representation of a hypothesis h 2 R re-
turns either “yes” to indicate that h = c or an instance x
such that h(x) 6= c(x) (a counterexample). The combina-
tion of an equivalence and membership oracle is sometimes
called a minimally adequate teacher [Ang87] (see [Ang87]
and [Ang90] for formal definitions).

It is assumed that the reader is familiar with distribution-free
(PAC) learning [Val84].

3 A NEW NOTION OF TEACHING

We develop two models. The first directly deals with com-
putational issues, while the second addresses the limitations
of teaching by examples alone.

3.1 TEACHING WITH EXAMPLES ONLY

We first propose the following notion of teaching, which
incorporates both teacher and learner, and requires that each
performs some of the work:

Definition 1 A representation class R for a concept class C
is polynomial-time teachable if there exists a pair of algo-
rithms T and L with the following properties:

1. When started on any representation r 2 R, T outputs a
teaching sequence s and terminates in time polynomial
in n and jrj.

2. AlgorithmL, given s, runs for time polynomial in n andjsj (which is polynomial in jrj), outputting a represen-
tation r0 such that �(r0) = �(r) = c.

3. If any adversarial teacher A (not necessarily time-
bounded) sends a set of examples s0 consistent withc but different than s thenL outputs either some r00 such
that �(r00) = c or L outputs no concept at all. L runs
in time polynomial in n and js0j.

Aside from time-boundedness, the primary difference be-
tween this model and that of Goldman-Kearns is with respect
to avoiding what we will call cheating. To understand the
problem, consider a teacher and learner which both have
in mind some binary encoding of concepts. Then if each
instance transmitted by the teacher corresponded to an ap-
propriate n bits of the encoding of the target concept, the
learner could quickly discover what the concept was without
learning in any real sense–it doesn’t even look at the labels!
Any reasonable model of teaching must therefore limit the
teacher and/or learner in some way to forestall such cheating.

In the Goldman-Kearns model, cheating is avoided by requir-
ing the teacher to produce a set of examples which will cause
any consistent learner to hypothesize the correct concept. We
propose phrasing the interaction between teacher and learner
as a modified Prover-Verifier session [GMR85] in which the
learner and teacher can collude, but no adversarial teacher
(in the IP sense) can cause the learner to output an incorrect
hypothesis.

On the surface, this approach to cheating avoidance might
seem to give our teacher more power. While the previous
model assumes an oblivious teacher, our teacher is tailored
to the learner and is even allowed to simulate the learner.
Thus, we can assume that the teacher knows the state of the
learner at all times.1 However, the following shows that our
teacher is no more powerful than that of Goldman-Kearns.

Fact 1 If a representation class is polynomial-time teach-
able then for every representation the teacher must produce
a teaching sequence which is consistent with exactly one
concept.

Proof: First, note that by definition every teaching sequence
must be consistent with at least one concept. Assume that
there is some representation r for which the teacher T pro-
duces a sequence s consistent with two distinct concepts�(r) = c and c2. The learner L must produce a represen-
tation r0 such that �(r0) = c. But an adversarial teacher A
could choose to teach a representation r2 such that�(r2) = c2

1This property would not hold if the model was extended to ran-
domized learners; in this paper, as is common in exact identification
research, we consider only deterministic learners.



using the same sequence s, in which case L would be fooled
into outputting an incorrect representation. 2
Similarly, it is not hard to see that if there is a teacher that
produces a sequence for every representation r in some class
such that the sequence is consistent with only the concept�(r) then an arbitrary consistent learner can be used as the
other member of the teacher/learner pair in our model. Thus
the difference between the two models is that the explicit in-
troduction of teacher/learner pairs facilitates the introduction
of computational complexity issues.

In our model both teacher and learner must be realizable
polynomial-time algorithms. As we will see, this immedi-
ately limits somewhat the classes which are teachable; re-
moving the computational bound on the teacher, as in the
definition of the class IP[GMR85], is an interesting alterna-
tive which we explore briefly as well.

3.2 TEACHING WITH TRUSTED INFORMATION

The above definition accomplishes two goals. First, it incor-
porates computational constraints on the teaching process.
And second, it allows teacher-learner collusion while avoid-
ing “cheating.” However, the interaction between teacher
and learner is still constrained to be a sequence of examples.
This seems unnecessarily restrictive.

Consider the following example. Goldman and Kearns
present an algorithm for teaching monotone k-term DNF for
any fixed k but note that the algorithm requires the learner
to know k. If the teacher could transmit at least a little
information—such as the value of k—that the learner simply
“takes on faith” without verification, then the teaching could
proceed without the restriction.

Thus a natural extension to our model is to allow the teacher
to transmit a small amount of “trusted” information to the
learner, information which the learner accepts as true. This
information might take different forms for different classes.
For monotone k-term DNF’s the obvious information to send
is k. For other classes, as we show below, it may be the
number of relevant variables in a concept or a size measure
of the concept. In every case the bits will be the output of
some deterministic function applied to the representation the
teacher has chosen. The problem, of course, is that the model
must not give the teacher so much power that it can “cheat”
with the learner as described above. The model we define
appears to overcome this problem.

Definition 2 A representation class R for a concept classC is polynomial-time teachable with trusted information if
there exist a pair of algorithms T and L and a deterministic
function f : R! f0;1g� with the following properties:

1. jf(r)j = O(log(jrj)) for all r.

2. When started on any representation r 2 R, T outputs
trusted bits f (r) = b followed by a teaching sequence s
and terminates in time polynomial in n and jrj.

3. Algorithm L, given b and s, runs for time polynomial
in n and jsj and outputs a representation r0 such that

�(r0) = �(r) = c.
4. If any adversarial teacher A (not necessarily time-

bounded) sends trusted bits b and a set of exampless0 consistent with c but different than s then L outputs
either some r00 such that �(r00) = c, or L outputs no
concept at all. L runs in time polynomial is n and js0j.

The choice of “logarithmic” to represent the “small” amount
of information that seemed intuitively reasonable is not ar-
bitrary. If we wish to transmit the k of, say, a k-term-DNFF then we will in general need a least O(log(jF j)) bits,
so our definition is in some sense a minimal extension of
the original. Furthermore, with logarithmic trusted bits it is
possible to teach many if not all of the relatively natural con-
cept classes which are known to be exactly identifiable with
a polynomial-time minimally adequate teacher, that is, with
teachers having equivalence oracles which run in polynomial
time. Logarithmic trusted information is also enough to teach
any exactly identifiable class if the teacher is unbounded, as
shown later. Finally, this is not enough information to allow
cheating: we now demonstrate a limit on how much can be
taught by a polynomial-time teacher even with logarithmic
trusted information.

Theorem 2 If NP 6� P=poly then DNF is not teachable
with trusted information.

Proof: Assume otherwise, and let T , L, and f be the teacher,
learner, and trusted bit functions which can teach DNF. IfP 6= NP (true if NP 6� P=poly) then for T , a polynomial-
time algorithm, there exist “hard” representations of DNF’s
each of which T cannot find a falsifying assignment for but
only some of which are truly tautologies. Furthermore, ifNP 6� P=poly then there must be some r+ a tautology
and r� not a tautology which are hard for T and for whichf(r+) = f (r�). In other words, f cannot partition the
hard tautologies into one set of equivalence classes and hard
falsifiable functions into another set.

To see this, assume otherwise, that is, that the values off partition the hard functions. Then f , a polynomial-time
function producing a logarithmic number of bits, could be
used by T along with a polynomial-size “hint” (actually one
for each size DNF) specifying which of the polynomially
many values of f represent hard tautologies in order to solve
the NP -complete problem of DNF-falsifiability. But thenNP � P=poly.

Thus to teach r�, T will transmit trusted bits f(r+) followed
by examples all of which are labeled true, andLwill output
a representation r0 such that �(r0) = �(r�); that is, r0 is not
a tautology. However, the same trusted bits and teaching
sequence are consistent with r+, so an adversarial teacher
can force L to output the wrong concept on target r+. 2
By duality, CNF is not teachable under the same complexity
assumptions. It is easy to see that the proof can be extended
to 3-DNF and 3-CNF as well.



4 TEACHING AND EXACT
IDENTIFICATION

It is natural to explore the relationship between teachable
concept classes, both with and without trusted information,
and concept classes for which exact identification can be
achieved.

By definition, the membership and equivalence oracles of
exact identification are not computationally limited. For ex-
ample, the class k-CNF can be exactly identified with equiv-
alence queries alone [Ang88] even though finding counterex-
amples to the hypothesis falsemay require solving an NP-
complete problem. Thus there are some classes which can
be exactly identified but which are not teachable according
to our definition. However, several interesting classes have
polynomial-time minimally adequate teachers, as discussed
below. In the sequel we will consider only such oracles unless
otherwise noted.

4.1 EXACT IDENTIFICATION WITH
MEMBERSHIP QUERIES

The qualitative differences between exact identification and
teaching are worth highlighting. Under the assumption of
polynomial-time oracles, the only difference between teach-
ing and exact identification with membership queries is the
information available to the algorithm making the query. A
teacher can use the representation of the concept to drive its
selection of examples, whereas a learner in the exact identi-
fication model must make queries based only the results of
past queries. Thus, the classes learnable under exact identifi-
cation with membership queries only is a subset of the classes
teachable without trusted information.

This containment is in fact proper. First, define a decision list
as a list of at most n literals each with an associated Boolean
value. A decision list defines a function over n-bit Boolean
input strings as follows: output the value associated with
the first satisfied literal, and output the complement of the
last literal’s value otherwise.2 Figure 1 contains an example
decision list. Define the class of full decision lists to be the
class which for instances of n bits consists of all possible
decision lists of exactly n variables (i.e. lists without any
irrelevant variables). This class forms a natural separating
class:

Lemma 3 The class of full decision lists is polynomial-time
teachable (without trusted information).

Proof: The teacher T will provide examples to the learner L
which prove that some variable vi can legitimately be placed
at the end of the decision list; repeating this process in the
obvious way teaches the entire list. Assuming that vi is
indeed the last variable in T ’s representation of the list, T
first provides an instance xwhich passes through to the 0 leaf
at vi. It then provides the (possibly empty) sequence of all

2This definition differs somewhat from the norm. Our definition
forces irrelevant variables to be left out of the list, simplifying the
presentation of our results.

h01000;1i h11011;0ih01111;0ih00010;1ix: h01010;0i x0: h01011;1i

01101
v1
v3v5
2v4v
0

Figure 1: Example Decision List And Initial Portion Of
Teaching Sequence.

examples whose instances differ from x in just one bit (other
than vi) and which are labeled 1. Let S represent the set of
variables which were toggled in this sequence and V the set
of all n variables. T next flips the value of vi in x and sends
this instance, which will be labeled 1, toL. Call this instancex0. Finally, T sends one example for each of the variables inV � S � fvig; the instance in each example will differ fromx0 in one of these variable positions, and each example will
be labeled 0. Figure 1 gives an example decision list and
initial teaching sequence.

To see that this sequence proves that vi can be placed at the
end of the list, let vj be the variable which immediately fol-
lows vi in some decision list representing the target concept.
Without loss of generality, assume vi’s leaf value is 0. Then
if vj has a leaf of value 0, the list having these two nodes
reversed represents the same concept. But it is not hard to see
that if vj does not have a 0 leaf then the teaching sequence



described above cannot be produced. 2
On the other hand, full decision listscan require exponentially
many membership queries to learn: consider all possible
conjuncts of n literals. Thus we have the following:

Theorem 4 The set of representation classes which can be
exactly identified with with a polynomial-time membership
oracle is properly contained in the the set of representation
classes which are polynomial-time teachable.

4.2 EXACT IDENTIFICATION WITH A
POLYNOMIAL-TIME MINIMALLY
ADEQUATE TEACHER

We have shown in Theorem 2 that under a certain complex-
ity assumption, there are classes which can be exactly iden-
tified with a minimally adequate teacher but which cannot
be taught with trusted information. We can prove a similar
result without complexity assumptions for teaching without
trusted information.

Fact 5 Decision Lists are exactly identifiable with a mini-
mally adequate teacher but are not teachable without trusted
information.

Proof: In order to teach the concept that is false on all
inputs, a teacher/learner pair must eliminate the 2n possible
concepts that are true on exactly one input, all of which
are representable as decision lists. But any example can
eliminate at most one such concept. So no teaching algorithm
can exist.

It is well-known that a variation of Rivest’s decision list
learning algorithm works in the exact identification model.2
We now discuss several classes which can be identified with
a polynomial-time minimally adequate teacher and indicate
how they can be taught in polynomial time with trusted in-
formation. These problems are included to demonstrate the
power of trusted information and to give examples of var-
ious ways trusted bits can be used to encode a termination
condition.

Regular sets: Angluin [Ang87] has given an algorithm for
the exact identification of regular sets, represented by de-
terministic finite automata (DFA’s), with membership and
equivalence queries. A subroutine of this algorithm uses
membership queries alone to find a minimal DFA consistent
with any finite set of strings labeled according to whether
or not they are in some regular language. The subroutine
takes time polynomial in the number of states of the min-
imal DFA as long as the labeled strings are polynomially
long. Angluin also notes that a polynomial-time equivalence
oracle can be constructed for the class of regular sets repre-
sented by DFA’s. Since a deterministic learner exists, there
is a polynomial-time teacher which can determine all of the
learner’s queries for a given regular set and provide the ap-
propriate examples for the learner. Furthermore, since the
hypotheses the learner constructs are all minimal, the learner
knows when to stop if it knows the number of states in the
minimal DFA for the set. This can be sent by the teacher to
the learner as a logarithmic number of trusted bits.

Read-once formulas: Hancock and Hellerstein [HH91],
in an extension of several earlier results [AHK89, Han90,
HK91], show that read-once Boolean formulas over a fairly
rich basis that they call �k can be exactly identified with a
minimally adequate teacher. �k consists of negations, thresh-
olds, and mod c gates for c less than k. In fact, they actually
prove a stronger result: read-once formulas over �k can
be exactly identified with membership queries alone given
the set of relevant variables and “justifying assignments” for
each. For some function f a justifying assignment for a vari-
able xi is simply an assignment of values to all variables such
that f (x1x2 . . . xi . . .xn) 6= f (x1x2 . . . �xi . . .xn), where �xi
denotes taking the complement of the value of xi. For read-
once formulas over �k it is clearly polynomial time to find
justifying assignments for each relevant variable given the
formula. Thus a teacher can be constructed which first sends
as trusted information the number of relevant variables fol-
lowed by justifying assignments for each and the responses
to the membership queries which the learner would ask in the
query model.�-formula decision trees: �-formula decision trees are
Boolean decision trees in which each node is a read-once
formula over the AND/OR/NOT basis and no variable ap-
pears more than once in the entire tree. The tree is evaluated
by first evaluating the root read-once formula, choosing the
left or right subtree according to whether the formula eval-
uates to 0 or 1, and recursing on that subtree until a leaf is
reached, at which time the leaf’s value is output. Thus �-
formula decision trees are a generalization of both read-once
formulas over the standard basis and of Boolean decision
trees with single variable nodes. Hancock [Han90] gives an
algorithm for learning such trees which uses each counterex-
ample it receives from an equivalence query to incorporate
one or more new variables into its hypothesized tree. The hy-
pothesis is correct once the processing which incorporates the
last relevant variable has been completed. Thus once again
the learner could terminate without help from an equivalence
oracle if it was told how many relevant variables to expect.

4.2.1 A Separating Class

As noted above, the class k-CNF can be exactly identified
with a minimally adequate teacher, but under certain assump-
tions cannot be taught under our definition. Here we show
a concept class which can be taught (without trusted infor-
mation) but which cannot, under certain assumptions, be
exactly identified using even a computationally unbounded
minimally adequate teacher.3 Avrim Blum[Blu90] has con-
structed a concept class for which exact identification is not
possible given the existence of one-way functions but which
is easily taught by giving the learner just one judiciously se-
lected example (we regard this example as the representation
of its concept, a slight departure from Blum’s definition).
Thus we have the following:

Theorem 6 Assuming the existence of one-way functions,
the set of concept classes which are exactly identifiable
with computationally unbounded membership and equiva-

3This result holds even when restricted to Boolean domains.



lence queries is incomparable to the set of those which are
polynomial-time teachable.

In fact, Blum’s class was constructed to demonstrate a sepa-
ration between approximate and exact learning models. Con-
ceptually, the concept class is an ordered set of strings with
the property that knowing string i tells a learner how to detect
and correctly label all strings j > i from among the many
“bad example” strings throughout which this set is pseudo-
randomly scattered. By changing the class so that only the
very first “good example” string contains this information
we obtain a new class which is teachable but not learnable in
either an approximate (PAC) or an exact sense.

4.3 EXACT IDENTIFICATION WITH AN
UNBOUNDED TEACHER

On the surface, it seems that any language which can be ex-
actly identified with a polynomial-time minimally adequate
teacher should be polynomial-time teachable with trusted in-
formation. Given that an identification algorithm exists, all
that a helpful teacher need do is supply its learner with the
oracle responses that the identification algorithm would re-
ceive and somehow indicate when the learner can stop via
the trusted information.

While there may be a general method for inferring an ap-
propriate logarithmic amount of stopping information from
identification algorithms, we have only been able to demon-
strate such a method in a relaxed model in which the teacher
is computationally unbounded:

Theorem 7 Any representation class which can be ex-
actly identified is teachable with trusted information by a
computationally-unbounded teacher.

Proof: Given any representation r of a concept c in an iden-
tifiable class, the teacher T first determines the maximum
number of equivalence queries which some fixed identifica-
tion algorithm I would make before being told to halt, where
the maximum is taken over all possible minimally adequate
teachers (or more precisely over all possible sequences of
valid counterexamples).

Since I always halts in polynomial time regardless of the
counterexample sequence, this maximum must be a polyno-
mial in jcj. Thus logarithmic trusted bits are sufficient forT to transmit this number to the learner L. T then chooses
such a maximal sequence and passes it, appropriately inter-
leaved with responses to I’s expected membership queries,
to L. L then attempts to verify that the oracle sequence sup-
plied by T is valid for I and contains the maximal number of
counterexamples indicated by the trusted information. If this
verification succeeds, L outputs I’s final equivalence query
hypothesis as its representation of c. 2
Thus, showing that a representation class is not teachable
with a computationally unbounded teacher also shows that
the class cannot be exactly identified. Furthermore, negative
results in the teaching model may shed light on algorithmic
methods which will not achieve exact identification. For
example, consider identification of DNF. A straightforward

algorithm for exact identification of monotone DNF uses
membership queries to produce one new term in the hypoth-
esis from each counterexample; that is, equivalence queries
are only used to identify additional terms. The following fact
implies that equivalence queries must be used for more than
this for general DNF identification:

Fact 8 DNF is not teachable by a computationally-
unbounded teacher if the trusted information transmitted is
the minimum number of terms in any DNF representation of
the concept being taught.

Proof Sketch: We show a set of DNF’s all of which have the
same minimal number of terms but for which the teaching
dimension is exponential in the number of variables n. The
set consists of the OR of n variables, a function which has
a single 0 value at the zero vector �0, and all the functions
which have exactly two 0 values, one at �0 and the other at
a vector which is at least Hamming distance 2 away (i.e. a
vector which has at least two 1’s).

All of these functions have n terms in their minimal represen-
tation. The OR is obvious. As an example of what minimal
representations of the other functions look like, consider the
function which has 0’s at �0 and �1: x1 �x2+x2 �x3+ � � �+xn �x1.
The other functions will be similar but one or more of the
terms will consist of single variables while the remainder of
the terms will form a sort of cycle similar to the above. That
every one of the functions in the set can be represented this
way and that the representations are minimal can be proved
by a simple induction based on the 2-clause CNF representa-
tion of the functions.

If the OR is chosen as the concept to be taught then a teaching
sequence of length 2n � n � 1 will be required (cf. [GK91,
Lemma 1]). 2
Since the above argument is combinatorial in nature, Fact 8
holds even if the learner is also allowed to be computationally
unbounded.

5 DISCUSSION

In the exact identification model, the learner must be able to
succeed even when given an adversarial teacher who chooses
the least helpful counterexamples. In our teaching model, the
learner can assume that the teacher will send the best coun-
terexamples that can be generated in polynomial time. So
negative results in the exact identification model that rely on
the adversarial nature of the teacher [Ang90] do not immedi-
ately carry over to our teaching model.

Thus, it seems possible that teaching with trusted information
could be a more powerful model. However, this is offset by
the difference in stopping criteria used by the learner in each
model. In exact identification, the learner stops when the
teacher says to stop; in teaching with trusted information, the
learner stops when convinced that there is only one concept
consistent with the information received from the teacher. A
teaching model like ours is too powerful if the teacher can
explicitly say when to stop: the teacher and learner simply
agree on an encoding protocol, the teacher sends examples



Table 1: Summary of Exact Identification vs. Teaching

Model: Membership Queries Poly-time MAT Unbounded MAT
Poly-time Teachable properly contains incomparable incomparable
Poly-time + trusted properly contains not subset of incomparable
Unbounded + trusted properly contains properly contains properly contains

which encode for the representation, and the learner is told
to stop after seeing enough bits to reconstruct the concept.
This is another version of the “cheating” problem discussed
in section 3.1.

A more subtle difference between the models has to do with
the clear separation of the two types of information trans-
mitted by the teacher with trusted information as opposed to
the intermingling of membership and equivalence query re-
sponses from a minimally adequate teacher. This separation
in the teaching model was useful, for example, in the proof
of Theorem 2. It may also be helpful to first think in teaching
terms when attempting to develop a new exact identification
algorithm for a class.

6 CONCLUSIONS AND FURTHER
RESEARCH

We have introduced a model of what it means for a concept
class to be teachable in a computationally feasible way: in-
formally, there must exist a polynomial-time teacher/learner
pair such that the learner can always infer the correct con-
cept from labeled examples and possibly a small amount of
trusted information presented by the teacher, and the learner
can never be fooled by an adversarial “teacher.”

Known relationships between variations on our teaching
model and versions of exact identification learners are sum-
marized in Table 1. The table entries describe the relation-
ship of the sets of classes which are teachable to those which
can be exactly identified in each model modulo complexity
assumptions for some entries. In addition to relaxing the
complexity assumptions, the main open question is whether
or not exact identification with a polynomial-time minimally
adequate teacher implies polynomial-time teachability.

Perhaps one of the most intriguing aspects of this line of
research is that there do not seem to be any natural classes
which are obviously teachable with trusted information but
not exactly identifiable with membership and equivalence
queries. Intuitively, of course, teaching should enable us to
“do more” than learning alone can do. Teaching certainly will
in general speed up the learning process, at least by constant
factors; does it do more than this? The negative results
for exact identification mentioned above may be a fruitful
field for finding natural classes which separate teaching from
identification. This model also provides a framework within
which time bounds for teaching variousclasses can be proved.

The fact that some classes are teachable but not PAC-
learnable (under the assumption of one-way functions) raises
the question of whether or not PAC-learnability of a concept
class having a polynomial-time minimally adequate teacher

implies polynomial-time teachability.

Some other research directions include considering concept
classes over continuous domains and examining the effects of
incorporating randomization at various points in the model.
An analog model for approximate teaching would also be of
interest.
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