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1 IntroductionConsider a modi�cation of a Markov chain in which at each step, with some probability, we undothe last forward transition of the chain. For intuition, the reader may wish to think of a user usinga browser on the world-wide web where he is following a Markov chain on the pages of the web,and occasionally hitting the \back button". We model such phenomena by discrete-time stochasticprocesses of the following form: we are given a Markov chainM on a set V = f1; 2; : : : ; ng of states,together with an n-dimensional vector ~� of backo� probabilities. The process evolves as follows: ateach time step t = 0; 1; 2; : : : ; the process is in a state Xt 2 V , and in addition has a history Ht,which is a stack whose items are states from V . Let top(H) denote the top of the stack H . Attime t = 0 the process starts at some state X0 2 V , with the history H0 containing only the singleelement X0. At each subsequent step the process makes either a forward step or a backward step,by the following rules: (i) if Ht consists of the singleton X0 it makes a forward step; (ii) otherwise,with probability �top(Ht) it makes a backward step, and with probability 1 � �top(Ht) it makes aforward step. The forward and backward steps at time t are as follows:1. In a forward step, Xt is distributed according to the successor state of Xt�1 under M ; thestate Xt is then pushed onto the history stack Ht�1 to create Ht.2. In a backward step, the process pops top(Ht�1) from Ht�1 to create Ht; it then moves totop(Ht) (i.e., the new state Xt equals top(Ht).)1Under what conditions do such processes have limit distributions, and how such processes di�erfrom traditional Markov chains? We focus in this paper on the time-averaged limit distribution,usually called the \Cesaro limit distribution".2Motivation. Our work is broadly motivated by user modeling for scenarios in which a userwith an \undo" capability performs a sequence of actions. A simple concrete setting is that ofbrowsing on the world-wide web. We view the pages of the web as states in a Markov chain, withthe transition probabilities denoting the distribution over new pages to which the user can moveforward, and the backo� vector denoting for each state the probability that a user enters the stateand elects to click the browser's back button rather than continuing to browse forward from thatstate.A number of research projects [1, 10, 13] have designed and implemented web intermediaries andlearning agents that build simple user models, and used them to personalize the user experience.On the commercial side, user models are exploited to better target advertising on the web basedon a user's browsing patterns; see [3] and references therein for theoretical results on these andrelated problems. Understanding more sophisticated models such as ours is interesting in its ownright, but could also lead to better user modeling.1Note that the condition Xt = top(Ht) holds for all t, independent of whether the step is a forward step orbackward step.2The Cesaro limit of a sequence a0; a1; : : : is limt!1 1t Pt�1�=0 a� , if the limit exists. For example, the sequence0,1,0,1,... has Cesaro limit 1=2. The Cesaro limit distribution at state i is limt!1 1t Pt�1�=0 Pr [Xt = i], if the limitexists. By contrast, the stationary distribution at state i is limt!1 Pr [Xt = i], if the limit exists. Of course, astationary distribution is always a Cesaro limit distribution. Intuitively, the stationary distribution gives the limitingfraction of time spent in each state, whereas the Cesaro limit distribution gives the average fraction of time spentin each state. We shall sometimes refer simply to either a stationary distribution or a Cesaro limit distribution as alimit distribution. 1



Overview of ResultsFor the remainder of this paper we assume a �nite number of states. For simplicity, we assumealso that the underlying Markov chain is irreducible (i.e., it is possible, with positive probability, toeventually reach each state from each other state) and aperiodic. In particular, M has a stationarydistribution, and not just a Cesaro limit distribution. Since some backo� probability �i may equal1, these assumptions do not guarantee that the backo� process is irreducible (or aperiodic). Weare mainly interested in the situation where the backo� process is irreducible.3We now give the reader a preview of some interesting and arguably unexpected phenomena thatemerge in such \back-button" random walks. Our primary focus is on the Cesaro limit distribution.Intuitively, if the history stack Ht grows unboundedly with time, then the process \forgets"the start state X0 (as happens in a traditional Markov process, where ~� is identically zero). Onthe other hand, if the elements of ~� are all very close to 1, the reader may envision the processrepeatedly \falling back" to the start state X0, so that Ht does not tend to grow unboundedly.What happens between these extremes?One of our main results is that there is always a Cesaro limit distribution, although there maynot be a stationary distribution, even if the backo� process is aperiodic. Consider �rst the casewhen all entries of ~� are equal, so that there is a single backo� probability � that is independentof the state. In this case we give a remarkably simple characterization of the limit distributionprovided � < 1=2: the history grows unboundedly with time, and the limit distribution of theprocess converges to that of the underlying Markov chain M .On the other hand, if � > 1=2 then the process returns to the start state X0 in�nitely often, theexpected history length is �nite, and the limit distribution di�ers in general from that of M , anddepends on the start state X0. Thus, unlike ergodic Markov chains, the limit distribution dependson the start state.More generally, consider starting the backo� process in a probability distribution over the statesof M ; then the limit distribution depends on this initial distribution. As the initial distributionvaries over the unit simplex, the set of limit distributions forms a simplex. As � converges to1=2 from above, these simplices converge to a single point, which is the limit distribution of theunderlying Markov chain.The transition case � = 1=2 is fascinating: the process returns to the start state in�nitelyoften, but the history grows with time and the distribution of the process reaches the stationarydistribution of M . These results are described in Section 3.We have distinguished three cases: � < 1=2, � = 1=2, and � > 1=2. In Section 4, we showthat these three cases can be generalized to backo� probabilities that vary from state to state.The generalization depends on whether a certain in�nite Markov process (whose states correspondto possible histories) is transient, null, or ergodic respectively (see Section 4 for de�nitions). Itis intuitively clear in the constant � case, for example, that when � < 1=2, the history will growunboundedly. But what happens when some states have backo� probabilities greater than 1/2 andothers have backo� probabilities less than 1/2? When does the history grow, and how does thelimit distribution depend on M and ~�? Even when all the backo� probabilities are less than 1=2,why should there be a limit distribution?We resolve these questions by showing that there exists a potential function of the historythat is expected to grow in the transient case (where the history grows unboundedly), is expectedto shrink in the ergodic case (where the expected size of the history stack remains bounded),and is expected to remain constant if the process is null. The potential function is a bounded3We would like to make the simplifying assumptions that no �i equals 1, and that the backo� process is irreducible,but we cannot, since later we are forced to deal with cases where these assumptions do not hold.2



di�erence martingale, which allows us to use martingale tail inequalities to prove these equivalences.Somewhat surprisingly, we can use this relatively simple characterization of the backo� process toobtain an e�cient algorithm to decide, givenM and �, whether or not the given process is transient,null or ergodic. We show that in all cases the process attains a Cesaro limit distribution (thoughthe proofs are quite di�erent for the di�erent cases). We also give algorithms to compute the limitprobabilities. If the process is either ergodic or null then the limit probabilities are computedexactly by solving certain systems of linear inequalities. However, if the process is transient, thenthe limit probabilities need not be rational numbers, even if all entries of M and ~� are rational.We show that in this case, the limit probabilities can be obtained by solving a linear system, wherethe entries of the linear system are themselves the solution to a semide�nite program. This givesus an algorithm to approximate the limit probability vector.In Section 2, we establish various de�nitions and notation. In Section 3, we consider the casewhere the backo� probabilities are constant (that is, uniform). In Section 4, we consider thegeneral case, where the backo� probabilities can vary. In Subsection 4.1, we show how it is possibleto classify, in polynomial time, the behavior of each irreducible backo� process as transient orergodic or null. In Subsection 4.2, we prove that each backo� process always has a Cesaro limitdistribution. In Subsection 4.3, we show how the limit distribution may be computed. In Section 5,we show how it is possible to extend our results to a situation where the backo� probabilities aredetermined by the edges (that is, for each forward step from state j to state k, there is a probabilityof revocation that depends on both j and k, rather than depending only on k). In Section 6, wegive our conclusions. We also have an appendix, in which we give some background material,namely, the Perron-Frobenius Theorem, Azuma's Inequality for martingales, submartingales, andsupermartingales, the Renewal Theorem, and the Law of Large Numbers. Also in the appendix,we complete the proof of one of our theorems.2 De�nitions and NotationWe use (M; ~�; i) to denote the backo� process on an underlying Markov chain M , with backo�vector ~�, starting from state i. This process is an (in�nite) Markov chain on the space of allhistories. Formally, a history stack (which we may refer to as simply a history) �� is a sequenceh�0; �1; : : : ; �li of states of V , for l � 0. For a history �� = h�0; �1; : : : ; �li, its length, denoted`(��), is l (we do not count the start state �0 in the length, since it is special). If `(��) = 0, thenwe say that �� is an initial history. For a history �� = h�0; �1; : : : ; �li, its top, denoted top(��), is�l. We also associate the standard stack operations pop and push with histories. For a history�� = h�0; �1; : : : ; �li, we have pop(��) = h�0; �1; : : : ; �l�1i, and for state j 2 f1; : : : ; ng, we havepush(��; j) = h�0; �1; : : : ; �l; ji. We let S denote the space of all �nite attainable histories.For a Markov chain M , backo� vector ~�, and history �� with top(��) = j, de�ne the successor(or next state) succ(��) to take on values from S with the following distribution:succ(��) = 8><>: pop(��) with probability �j if `(��) � 1push(��; k) with probability (1� �j)Mjk if `(��) � 1push(��; k) with probability Mjk if `(��) = 0For a Markov chain M , backo� vector ~� and state i 2 f1; : : : ; ng, the (M; ~�; i)-Markov chainis the sequence hH0; H1; H2; : : :i taking values from the set S of histories, with H0 = hii andHt+1 distributed as succ(Ht). We refer to the sequence hX0; X1; X2; : : :i, with Xt = top(Ht) as the(M; ~�; i)-backo� process. Several properties of the (M; ~�; i)-backo� process are actually independent3



of the start state i, and to stress this aspect we will sometimes use simply the term \(M; ~�)-backo�process".Note that the (M; ~�; i)-backo� process does not completely give the (M; ~�; i)-Markov chain,because it does not specify whether each step results from a \forward" or \backward" operation.To complete the correspondence we de�ne an auxiliary sequence: Let S1; : : : ; St; : : : be the sequencewith St taking on values from the set fF;Bg, with St = F if `(Ht) = `(Ht�1) + 1 and St = Bif `(Ht) = `(Ht�1) � 1. (Intuitively, F stands for \forward" and B for \backward".) Noticethat sequence X0; : : : ; Xt; : : : together with the sequence S1; : : : ; St; : : : does completely specify thesequence H0; : : : ; Ht; : : :.We study the distribution of the states Xt as the backo� process evolves over time. We shallshow that there is always a Cesaro limit distribution (although there is not necessarily a stationarydistribution, even if the backo� process is aperiodic). We shall also study the question of e�cientlycomputing the Cesaro limit distribution.3 Constant Backo� ProbabilityThe case in which the backo� probability takes the same value � for every state has a very cleancharacterization, and it will give us insight into some of the arguments to come. In this case, werefer to the (M; ~�; i)-backo� process as the (M;�; i)-backo� process (where we drop the vector signabove �).We �x a speci�c (M;�; i)-backo� process throughout this section. Suppose we generate asequence X0; X1; : : : ; Xt; : : : of steps together with an auxiliary sequence S1; : : : ; St; : : :. To beginwith, we wish to view this sequence of steps as being \equivalent" (in a sense) to one in which onlyforward steps are taken. In this way, we can relate the behavior of the (M;�; i)-backo� process tothat of the underlying (�nite) Markov process M beginning in state i, which we understand muchmore accurately. We write qt(j) to denote the probability that M , starting in state i, is in state jafter t steps.When the backo� probability takes the same value � for every state, we have the following basicrelation between these two processes.Theorem 3.1 For given natural numbers � and t, and a state j, we have Pr [Xt = j j `(Ht) = �] =q�(j):Proof. Consider a string ! of F's and B's with the property the in every pre�x, the number ofB's is not more than the number of F's. Notice that every such string corresponds to a legitimateauxiliary sequence for the backo� process (except if some �i = 0 or 1). Now consider strings ! and!0 such that ! = !1FB!2 and !0 = !1!2. Let ! be of length t and !1 of length t1. Notice thatPr [Xt = j j hS1; : : : ; Sti = !]= X��2S Pr [Ht1 = �� j hS1; : : : ; St1i = !1] � Pr [Xt = j j hSt1+1; : : : ; St1i = FB!2 and Ht1 = ��]= X��2S Pr [Ht1 = �� j hS1; : : : ; St1i = !1] � Pr [Xt = j j hSt1+3; : : : ; St1i = !2 and Ht1+2 = ��]= X��2S Pr [Ht1 = �� j hS1; : : : ; St1i = !1] � Pr [Xt�2 = j j hSt1+1; : : : ; St1�2i = !2 and Ht1 = ��]= Pr �Xt�2 = j j hS1; : : : ; St�2i = !0� 4



This motivates the following notion of a reduction. A sequence ! of F's and B's reduces in one stepto a sequence !0 if ! = !1FB!2 and !0 = !1!2. A sequence ! reduces to a sequence !00 if if !00can be obtained from ! by a �nite number of \reductions in one step". Repeatedly applying theclaim from the previous paragraph, we �nd that if a string ! of length t reduces to a string !00 oflength t00, then Pr [Xt = j j hS1; : : : ; Sti = !] = Pr �Xt00 = j j hS1; : : : ; St00i = !00� :But every auxiliary sequence hS1; : : : ; Sti can eventually be reduced to a sequence of the form F�(i.e., consisting only of forward steps), and further � = `(Ht). This yields:Pr [Xt = j j `(Ht) = �] = Pr hX� = j j hS1; : : : ; S�i = F�i = q�(j):In addition to the sequences fXtg and fStg, consider the sequence fYt : t � 0g, where Yt isthe history length `(Ht). Now Yt is simply the position after t steps of a random walk on thenatural numbers, with a re
ecting barrier at 0, in which the probability of moving left is � and theprobability of moving right is 1� �. This correspondence will be crucial for our analysis.In terms of these notions, we mention one additional technical lemma. Its proof follows simplyby conditioning on the value of Yt and applying Theorem 3.1.Lemma 3.2 For all natural numbers t and states j, we have Pr [Xt = j] =Pr qr(j) �Pr [Yt = r] :We are now ready to consider the two cases where � � 12 and where � > 12 , and show that ineach case there is a Cesaro limit distribution.The case of � � 12 : Let the stationary probability distribution of the underlying Markov chainM be h 1; : : : ;  ni. By our assumptions about M , this distribution is independent of the startstate i. When � � 12 , we show that the (M;�; i)-backo� process converges to h 1; : : : ;  ni. Thatis, there is a stationary probability distribution, which is independent of the start state i, and thisstationary probability distribution equals the stationary probability distribution of the underlyingMarkov chain.Theorem 3.3 For all states j of the (M;�; i)-backo� process, we have limt!1 Pr [Xt = j] =  j.Proof. Fix � > 0, and choose t0 large enough that for all states j of M and all t � t0, we havejqt(j)�  j j < �=2. Since � � 1=2, we can also choose t1 � t0 large enough that for each t � t1, wehave Pr [Yt > t0] > 1� �=2. Then for t � t1 we havejPr [Xt = j]�  jj = �����Xr qr(j) � Pr [Yt = r]�  jXr Pr [Yt = r]�����= �����Xr (qr(j)�  j) � Pr [Yt = r]������ Xr jqr(j)�  j j �Pr [Yt = r]= Xr<t1 jqr(j)�  j j � Pr [Yt = r] + Xr�t1 jqr(j)�  jj � Pr [Yt = r]� Xr<t1 Pr [Yt = r] + Xr�t1 �=2 � Pr [Yt = r]� �=2 + �=2 = �: 5



Although the proof above applies to each � � 12 , we note a qualitative di�erence between thecase of � < 12 and the \threshold case" � = 12 . In the former case, for every r, there are almostsurely only �nitely many t for which Yt � r; the largest such t is a step on which the process pushesa state that is never popped in the future. In the latter case, Yt almost surely returns to 0 in�nitelyoften, and yet the process still converges to the stationary distribution of M .The case of � > 12 : When � > 12 , the (M;�; i)-backo� process retains positive probability onshort histories as t increases, and hence retains memory of its start state i. Nevertheless, theprocess has a Cesaro limit distribution, but this distribution may be di�erent from the stationarydistribution of M .Theorem 3.4 When � > 12, the (M;�; i)-backo� process has a Cesaro limit distribution.Proof. For all natural numbers t and states j we have Pr [Xt = j] = Pr qr(j) � Pr [Yt = r] byLemma 3.2. Viewing Yt as a random walk on the natural numbers, one can compute the Cesarolimit of Pr [Yt = r] to be �r = �� when r = 0, and �r = �zr�1 when r > 0, where � = (2��1)=(2�2)and z = (1� �)=�. (Note that Yt does not have a stationary distribution, because it is even onlyon even steps.) A standard argument then shows that Pr [Xt = j] has the Cesaro limit Pr �rqr(j).Note that the proof shows only a Cesaro limit distribution, rather than a stationary distribution.We now give an example where there is no stationary distribution, even though the backo� processis aperiodic.Example: Assume M =  :01 :99:99 :01 ! � = :99: (1)Assume that the two states are states 1 and 2, and that the start state is 1. It is easy to see thatthe backo� process (M;�; 1) can have the initial history h1i only on even steps. By considering, asbefore, the corresponding random walk on the natural numbers, with a re
ecting barrier at 0, inwhich the probability of moving left is .99 and the probability of moving right is .01, we see thaton even steps, with high probability the backo� process has the initial history h1i, and hence is instate 1, while on the odd steps, with high probability the backo� process has the history h1; 2i, andhence is in state 2. Since the backo� process is in state 1 with high probability on even steps, andis in state 2 with high probability on odd steps, it follows that there is no stationary distribution.Note that the backo� process is aperiodic: this follows immediately from the fact that there isa self-loop (in fact, both states have a self-loop, that is, it is possible to pass from each state toitself in one step). This is in spite of the fact that there is a periodicity in the histories. Later, weshall study the Markov chain (the \Polish matrix") whose states consist of the attainable histories:the Polish matrix is always periodic.Now, more generally, suppose that the process starts from an initial distribution over states; weare given a probability vector z = hz1; : : : ; zni, choose a state j with probability zj , and begin theprocess from j. As z ranges over all possible probability vectors, what are the possible vectors oflimit distributions? Let us again assume a �xed underlying Markov chain M , and denote this setof limit distributions by S�.Theorem 3.5 Each S� is a simplex. As � converges to 12 from above, these simplices converge tothe single vector that is the stationary distribution of the underlying Markov chain.6



Proof. Let us de�ne �(�)r to be the value of �r given in the proof of Theorem 3.4 when thebackedge probability is �. De�ne qzt to be the probability vector whose jth entry is the probabilitythat the Markov process given by M is in state j after t steps, if the process starts from an initialdistribution z of states. Thus, qzt = zM t. Note that qt(j), as de�ned earlier, is the jth entry of qztwhen z is the probability distribution with zj = 1 and zk = 0 when k 6= j. De�ne f�(z) to be theCesaro limit distribution, when � is the backedge probability. As in the proof of Theorem 3.4, wehave f�(z) = Pr �(�)r qzr . It is easy to see that f� is a linear function, which implies that S� is asimplex.Let  be the stationary probability distribution of the underlying Markov chain M , so that M =  . We now show that as � converges to 12 from above, the simplices S� converge to thesingle vector  . We �rst show that  2 S�. Since  M =  , we have q t =  for every t. It followseasily that f�( ) =  . Hence,  2 S�, as desired.To show that the S�'s converge to  , we show that for each � > 0, there is �0 such that if12 < � < �0, then S� is in the ball of radius � about  .We know that qzt = zM t converges to  as t goes to in�nity, for each probability vector z.This convergence is in fact uniform, over all probability vectors. That is, given � > 0, there is Tsuch that for every t > T and for every probability vector z, we have kqzt �  k2 < � (here k�k2is the `2-norm). Choose k so that kqzk �  k2 < �=3 for every probability vector z. Then choose�0 > 12 so that for every � with 12 < � < �0, we have Pr<k �(�)r < �=3 (it is easy to see that this ispossible, by de�nition of �(�)r ). Then kf�(z)�  k2 = 


Pr<k �(�)r (qzr �  ) +Pr�k �(�)r (qzr �  )


2 �Pr<k �(�)r kqzr �  k2+Pr�k �(�)r kqzr �  k2. Now kqzr �  k2 � 2, since qzr and  are each probabilityvectors, and so Pr<k �(�)r kqzr �  k2 � 2Pr<k �(�)r < 2�=3. Further, kqzr �  k2 < �=3 for r � k, andso Pr�k �(�)r kqzr �  k2 � (�=3)Pr�k �(�)r � (�=3)Pr �(�)r = �=3. So kf�(z)�  k2 < �. Therefore,S� is in the ball of radius � about  , as desired.4 Varying Backo� ProbabilitiesRecall that the state space S of the (M; ~�; i)-Markov chain contains all �nite attainable histories ofthe backo� process. Let us refer to the transition probability matrix of the (M; ~�; i)-Markov chainas the Polish matrix with start state i, or simply the Polish matrix if i is implicit or irrelevant.Note that even though the backo� process has only �nitely many states, the Polish matrix has acountably in�nite number of states.Our analysis in the rest of the paper will branch, depending on whether the Polish matrix istransient, null, or ergodic. We now de�ne these concepts, which are standard notions in the studyof denumerable Markov chains (see e.g. [9]). A Markov chain is called recurrent if, started in anarbitrary state i, the probability of eventually returning to state i is 1. Otherwise, it is calledtransient. There are two subcases of the recurrent case. If, started in an arbitrary state i, theexpected time to return to i is �nite, then the Markov chain is called ergodic. If, started in anarbitrary state i, the probability of return to state i is 1, but the expected time to return to i isin�nite, then the Markov chain is called null. Every irreducible Markov chain is either transient,ergodic, or null, and for irreducible Markov chains, we can replace every occurrence of \an arbitrarystate" by \some state" in these de�nitions above. Every irreducible Markov chain with a �nite statespace is ergodic.As examples, consider a random walk on the natural numbers, with a re
ecting barrier at 0,where the probability of moving left (except at 0) is p, of moving right (except at 0) is 1� p, andof moving right at 0 is 1. If p < 1=2, then the walk is transient; if p = 1=2, then the walk is null;7



and if p > 1=2, then the walk is ergodic.We say that the backo� process (M; ~�; i) is transient (resp., null, ergodic) if the Polish matrixis transient (resp., null, ergodic). In the constant � case (Section 3), if � < 1=2, then the backo�process is transient; if � = 1=2, then the backo� process is null; and if � > 1=2, then the backo�process is ergodic. The next proposition says that the classi�cation does not depend on the startstate and therefore we may refer to the backo� process (M; ~�) as being transient, ergodic, or null.Proposition 4.1 The irreducible backo� process (M; ~�; i) is transient (resp., ergodic, null) pre-cisely if the backo� process (M; ~�; j) is transient (resp., ergodic, null).Proof. Let us call a state i transient if (M; ~�; i) is transient, and similarly for the other properties(recurrent, and its subclassi�cations ergodic and null). We must show that if some state is transient(resp., ergodic, null) then every state is transient (resp., ergodic, null). If �j = 0 for some j, thenevery state i is transient. This is because starting in state i, there is a positive probability ofeventually reaching state j, and the stack hi; : : : ; ji can never be unwound back to the originalstack hii. So assume that �j > 0 for every j.Assume that there is at least one transient state and at least one recurrent state; we shallderive a contradiction. Assume �rst that there is some transient state j with �j < 1. Let i be arecurrent state. Starting in state i, there is a positive probability of eventually reaching state j.This gives the stack hi; : : : ; ji. There is now a positive probability that the stack never unwindsback to hi; : : : ; ji (this follows from the fact that j is transient and that �j < 1). But if the stacknever unwinds to hi; : : : ; ji, then it never unwinds to hii. So there is a positive probability that thestack never unwinds to hii, which contradicts the assumption that i is recurrent. Hence, we canassume that for every transient state j, we have �j = 1.Let j be an arbitrary state. We shall show that j is recurrent, a contradiction. Assume thatthe backo� process starts in state j; we must show that with probability 1, the stack in the backo�process returns to hji. Assume that the next state is `, so that the stack is hj; `i. If ` is transient,then with probability 1, on the following step the stack is back to hji, since �` = 1. Therefore,assume that ` is recurrent. So with probability 1, the stack is hj; `i in�nitely often. Since �` > 0,it follows that with probability 1, the stack must eventually return to hji, which was to be shown.We have shown that if some state is transient, then they all are. Assume that there is at leastone null state and at least one ergodic state; we shall derive a contradiction. This will concludethe proof.Assume �rst that there is some null state j with �j < 1. Let i be an ergodic state. There isa positive probability that starting in state i in (M; ~�; i), the backo� process eventually reachesstate j and then makes a forward step. Since the expected time in (M; ~�; j) to return to thestack hji is in�nite, it follows that the expected time in (M; ~�; i) to return to hii is in�nite. Thiscontradicts the assumption that i is ergodic. Hence, for every null state j, we have �j = 1.Let j be an arbitrary state. We shall show that j is ergodic, a contradiction. For each state i,let hi be the expected time to return to the stack hii in (M; ~�; i), after starting in state i. Thus,hi is �nite if i is ergodic, and in�nite if i is null. From the start state j in (M; ~�; j), the expectedtime to return to the stack hji isX̀Mj`(�`(2) + (1� �`)�`(h` + 2) + (1� �`)2�`(2h` + 2) + (1� �`)3�`(3h` + 2) + � � �) (2)The term Mj`�`(2) represents the situation where the �rst step is to some state `, followed imme-diately by a backward step. The termMj`(1��`)�`(h`+2) represents the situation where the �rst8



step is to some state `, followed immediately by a forward step, followed eventually by a return tothe stack hj; `i, followed immediately by a backward step. The next term Mj`(1� �`)2�`(2h` + 2)represents the situation where the �rst step is to some state `, followed immediately by a forwardstep, followed eventually by a return to the stack hj; `i, followed immediately by a forward step,followed eventually by another return to the stack hj; `i, followed immediately by a backward step.The pattern continues in the obvious way.The contribution to the sum by null states ` is �nite, since �` = 1 for each null state `. Letz` = h` + 2. Then(1� �`)�`(h` + 2) + (1� �`)2�`(2h` + 2) + (1� �`)3�`(3h` + 2) + � � �is bounded above by(1� �`)�`(z`) + (1� �`)2�`(2z`) + (1� �`)3�`(3z`) + � � �This is bounded, since(1� �`) + (1� �`)2(2) + (1� �`)3(3) + � � �= (1� �`)=(�`)2:Therefore, the expression (2), the expected time to return to the stack hji, is �nite, so j isergodic, as desired.We shall prove the following theorems.Theorem 4.2 If (M; ~�) is irreducible, then the task of classifying the (M; ~�)-backo� process astransient or ergodic or null is solvable in polynomial time.Theorem 4.3 Each (M; ~�; i)-backo� process has a Cesaro limit distribution. If the process isirreducible and is either transient or null, then this limit distribution is independent of the startstate i. Furthermore, the limit distribution is computable in polynomial time if the process is ergodicor null.When the (M; ~�; i)-backo� process is transient, the limit probabilities are not necessarily ra-tional in the entries of M and ~� (see example in Section 4.3.3) and therefore we cannot hope tocompute them exactly. Instead, we give an algorithm for approximating these limit probabilities.Speci�cally, we show the following:Theorem 4.4 Let (M; ~�; i) be a transient backo� process on n states, and let all entries of M and~� be rationals expressible as ratios of l-bit integers. Then given any error bound � > 0, a vector �0that �-approximates the limit distribution � (i.e., satis�es j�0j � �j j � �) can be computed in timepolynomial in n; l and log 1� .The next theorem shows the delicate balance that a null backo� process is in.Theorem 4.5 Let (M; ~�) be an irreducible, null backo� process.1. If (M; ~�) is modi�ed by increasing some �j, but leaving M and all other �i's the same, thenthe resulting backo� process is ergodic.2. If (M; ~�) is modi�ed by decreasing some �j , but leaving M and all other �i's the same, thenthe resulting backo� process is transient.Proof. The �rst part is Claim 4.28 below. The second part is demonstrated by comments afterClaim 4.28.In particular, it follows from Theorem 4.5 that null backo� processes form a set of measure 0.9



4.1 Classifying the Backo� ProcessIn this section we show how it is possible to classify, in polynomial time, the behavior of eachirreducible (M; ~�)-backo� process as transient or ergodic or null. In Section 3 (where the backo�probability is independent of the state), except for initial histories the expected length of the historyeither always grows, always shrinks, or always stays the same, independent of the top state in thehistory stack. To see that this argument cannot carry over to this section, consider a simple Markovchain M on two states 1 and 2, with Mij = 1=2 for every pair i; j, and with �1 = :99 and �2 = :01.It is clear that if the top state is 1, then the history is expected to shrink while if the top state is 2,then the history is expected to grow. To deal with this imbalance between the states, we associatea weight wi with every state i and consider the weighted sum of states on the stack. Our goal isto �nd a weight vector with the property that the sum of the weights of the states in the stack isexpected to grow (resp., shrink, remain constant) if and only if the length of the history is expectedto grow (resp., shrink, remain constant) This hope motivates our next few de�nitions.De�nition 4.6 For a nonnegative vector ~w = hw1; : : : ; wni and a history �� = h�0; : : : ; �li of abacko� process on n states, de�ne the ~w-potential of ��, denoted �~w(��), to be Pli=1w�i (i.e., thesum of the weights of the states in the history, except the start state).De�nition 4.7 For a nonnegative vector ~w = hw1; : : : ; wni and a history �� = h�0; : : : ; �li of abacko� process on n states, de�ne the ~w-di�erential of ��, denoted ��~w(��), to be E [�~w(succ(��))]��~w(��). (Here E represents the expected value over the distribution given by succ(��).)The following proposition is immediate from the de�nition.Proposition 4.8 If �� and ��0 are non-initial histories with the same top state j, then��~w(��) = ��~w(��0) = ��jwj + (1� �j) nXk=1Mjkwk:The above proposition motivates the following de�nition.De�nition 4.9 For a nonnegative vector ~w = hw1; : : : ; wni, a history �� = h�0; : : : ; �li of a backo�process on n states, and state j 2 f1; : : : ; ng, let ��~w;j = ��~w(��), where �� is any history withj = top(��) and `(��) > 0. Let ��~w denote the vector h��~w;1; : : : ;��~w;ni.For intuition, consider the constant � case with weight wi = 1 for each state i. In this case�~w(��), the ~w-potential of ��, is precisely `(��), and ��~w(��), the ~w-di�erential of ��, is the expectedchange in the size of the stack, which is 1� 2�. When � < 1=2 (resp., � = 1=2, � > 1=2), so thatthe expected change in the size of the stack is positive (resp., 0, negative), the process is transient(resp., null, ergodic).Similarly, in the varying � case we would like to associate a positive weight with every stateso that (1) the expected change in potential, or the \drift" of the potential, in every step has thesame sign independent of the top state (i.e., ~w is positive and ��~w is either all positive or all zeroor all negative), and (2) this sign can be used to categorize the process as either transient, null orergodic, precisely as it did in the constant � case.Examples: We now give examples where this approach succeeds in classifying the backo� processas transient, ergodic, or null. Let M and ~� be as follows:M =  12 1212 12 ! ~� = h25 ; 23i: (3)10



Let ~w = (3; 1). Then ��~w = (0; 0). Thus, ~w is a witness to (M; ~�) being null. (Such results areformally proven later.)Now let M be as in (3), and let ~�0 = (13 ; 23). Let ~w0 = (4; 1). Then ��~w0 = (13 ; 16). Since��~w0 is all positive, we conclude that ~w0 is a witness to (M; ~�0) being transient. Note that this isconsistent with the second part of Theorem 4.5, since �0 is obtained from � by lowering �1.Finally, let M be as in (3), and let ~�00 = (25 ; 45). Let ~w00 = (4; 1).4 Then ��~w00 = (� 110 ;� 310).Since ��~w00 is all negative, we conclude that ~w00 is a witness to (M; ~�00) being ergodic. Note thatthis is consistent with the �rst part of Theorem 4.5, since �00 is obtained from � by raising �2.There are easy counterexamples, say, if some �i = 1 and some other �j = 0, that show that itis not possible to insist that the expected change in potential be always positive, or always zero,or always negative, when all weights are positive. Therefore, we relax the requirement of positivityon vectors slightly and de�ne the notion of an \admissible" vector (applicable to both the vectorof weights and also the vector of changes in potential).De�nition 4.10 We say that an n-dimensional vector ~v is admissible for a vector ~� if ~v is non-negative and vi = 0 only if �i = 1. (We will say simply \admissible" instead of \admissible for ~�"if ~� is �xed or understood.)In Section 4.1.1 we prove three very natural lemmas that combine to show the following. Givenan irreducible backo� process and an admissible vector ~w: (1) (Lemma 4.14) If ��w is admissiblethen the process is transient. (2) (Lemma 4.19) If ��w is zero then the process is null. (3)(Lemma 4.17) If ���w is admissible then the process is ergodic. Roughly speaking, we show that�~w(��) is a bounded-di�erence martingale. This enables us to use martingale tail inequalities toanalyze the long-term behavior of the process.This explains what could happen if we are lucky with the choice of ~w. It does not explain howto �nd ~w, or even why the three cases above are exhaustive. In the rest of this section, we showthat the cases are indeed exhaustive and give a e�cient algorithm to compute ~w. This part of theargument relies on the surprising properties of an n� n matrix related to the (M; ~�)-process. Wenow de�ne this matrix, that we call the Hungarian matrix.Let A be the n � n diagonal matrix with the ith diagonal entry being �i. Let I be the n � nidentity matrix. If �i > 0 for every i, then the Hungarian matrix for the (M; ~�)-process, denotedH = H(M;~�) is the matrix (I � A)MA�1. (Notice that A�1 does exist and is the diagonal matrixwith ith entry being 1=�i.)The spectral properties of H , and in particular its maximal eigenvalue, denoted �(H), playa central role in determining the behavior of the (M; ~�)-process. In this section we show how itdetermines whether the process is ergodic, null, or transient. In later sections, we will use it tocompute limit probability vectors, for a given (M; ~�)-process.The maximal eigenvalue �(H) motivates us to de�ne a quantity �(M;~�) which is essentiallyequal to �(H), in cases where H is de�ned. Let�(M; ~�) = sup f�j There is an admissible ~w such that the vector (I � A)M~w� �A~w is admissibleg :We �rst dispense with the case where some �i = 0.Claim 4.11 If (M; ~�) is irreducible and �j = 0 for some j, then �(M; ~�) =1.4It is a coincidence that ~w0 = ~w00. 11



Remark: From the proof it follows that if every entry of M and ~� is an l-bit rational, thenfor any � � 2l, there exists a non-negative vector ~w with kwk1 � 1 and wi � 2�poly(n;l) if wi 6= 0satisfying (I �A)M ~w � �~w. This fact will be used in Section 4.3.3.Proof. Let � < 1 be any constant. We prove the claim by explicitly constructing an admissiblevector ~w such that (I �A)M ~w � �A~w is admissible.Let Mmin be the smallest non-zero entry of M , and let �max be the largest entry of ~� that isstrictly smaller than 1. Let 
 be any positive number less than (1��max)Mmin� . Let j be any indexsuch that �j = 0. Let GM;~� be the graph on vertex set f1; : : : ; ng that has an edge from i to k,if �i 6= 1 and Mik 6= 0. (This is the graph with edges giving forward steps of positive probabilityof the (M; ~�)-process.) Let d(i; k) denote the length of the shortest path from i to k in the graphGM;~�. By the irreducibility of the (M; ~�)-process we have that d(i; j) < n for every state i. Wenow de�ne ~w as follows. wi = ( 0 if �i = 1
d(i;j) otherwise.It is clear by construction that 
 > 0 and thus ~w is admissible. Let ~v = (I�A)M ~w��A~w. Weargue that ~v is admissible componentwise, showing that vi satis�es the condition of admissibilityfor every i.Case 1: �i = 1. In this case it su�ces to show vi � 0. This follows from the facts thatPk(1� �i)Mikwk � 0, and ���iwi = 0 since wi = 0.Case 2: �i = 0. (This includes the case k = j.) In this case, again we have ���iwi = 0.Further we have Pk(1� �i)Mik = PkMik = 1 and thus vi = 1, which also satis�es the conditionfor admissibility.Case 3: 0 < �i < 1. In particular, i 6= j and d(i; j)> 0. Let k be such that d(k; j) = d(i; j)� 1and there is an edge from i to k in GM;~�. We know such a state k exists (by de�nition of shortestpaths). We have: vi = Xk0 (1� �i)Mik0wk0 � ��iwi� (1� �i)Mikwk � ��iwi� (1� �max)Mminwk � �wi= (1� �max)Mmin
d(k;j) � �
d(i;j)= ((1� �max)Mmin � �
)
d(k;j)> 0 (since 
 < (1��max)Mmin� )Again the condition for admissibility is satis�ed.The next claim shows that in the remaining cases �(M; ~�) = �(H).Claim 4.12 Let (M; ~�) be irreducible. If �i > 0 for every i, then �(M; ~�) = �(H). Further, thereexists an admissible vector ~w such that (I �A)M ~w = �(M; ~�)A~w.Proof. Note �rst that the Hungarian matrix H is nonnegative. Our hope is to apply the Perron-Frobenius theorem to this non-negative matrix and derive some bene�ts from this. However, H isnot necessarily irreducible, so we can do this yet. So we consider a smaller matrix, H j~�, which isthe restriction of H to rows and columns corresponding to j such that �j < 1. Notice that H j~�is irreducible. (This is equivalent to M j~� being irreducible, which is implied by the irreducibilityof the backo� process.) By the Perron-Frobenius Theorem (Theorem A.1), there exists a (unique)12



positive vector ~v0 and a (unique) positive real � = �(H j~�) such that H j~�~v0 = �~v0. In what followswe see that �(M; ~�) = �(H j~�) = �(H).First we verify that �(H j~�) = �(H). This is easily seen to be true. Note that the rows of Hthat are omitted from H j~� are all 0. Thus a vector ~x is a right eigenvector of H if and only if itis obtained from a right eigenvector ~x0 of H j~� by padding with zeroes (in indices j where �j = 1),and this padding preserves eigenvalues. In particular, we get that �(H) = �(H j~�) and there is anadmissible vector ~v (obtained by padding ~v0) such that H~v = �(H)~v.Next we show that �(M; ~�) � �(H). Consider any �0 < �(H) and let ~w = A�1~v. Then notethat (I � A)M~w � �0A~w = H~v � �0~v = (�(H)� �0)~v which is admissible. Thus �(M;~�) � �0 forevery �0 < �(H) and thus �(M; ~�) � �(H).Finally we show that �(M; ~�) � �(H). Let ~w be an admissible vector and let � > 0 be such that(I �A)M~w� �A~w is admissible. Let ~v = A�1 ~w. First note that vj must be 0 if �j = 1, or else thejth component of the vector (I � A)M~w� �A~w is negative. Now let ~v0 be obtained by restricting~v to coordinates such that �j < 1. Notice now that we have H j~�~v0 � �~v0 is a non-negative vector.From the fact [11, p. 17] that �(A) = max~x ( minijxi 6=0�(Ax)ixi �)for any irreducible non-negative matrix A, we conclude that �(H j~�) � �.This concludes the proof that �(M; ~�) = �(H). The existence of a vector ~w satisfying (I �A)M ~w = �(H)A~w also follows from the argument above.Lemma 4.13 For every irreducible (M; ~�)-backo� process, the following hold.� (M; ~�) is ergodic , �(M; ~�) < 1 , There is an admissible ~w such that ���~w isadmissible.� (M; ~�) is null , �(M; ~�) = 1 , There is an admissible ~w such that ��~w = ~0.� (M; ~�) is transient , �(M; ~�) > 1 , There is an admissible ~w such that ��~w isadmissible.Furthermore, �(M;~�) and the vector ~w are computable in polynomial time.Proof. The fact that �(M; ~�) is computable e�ciently follows from Claims 4.11 and 4.12.Notice now that ��~w = (I �A)M~w�A~w. We start with the case �(M; ~�) < 1. Notice that inthis case, no �i = 0 (by Claim 4.11) and hence we can apply Claim 4.12 to see that there exists avector ~w such that (I � A)M ~w = �A~w. For this vector ~w, we have ��~w = (�� 1)A~w. Thus, thevector ���~w = (1� �)~w is admissible. Applying Lemma 4.17 of Section 4.1.1, we conclude thatthe (M; ~�)-process is ergodic.Similarly, if �(M; ~�) = 1, we have that for the vector ~w from Claim 4.12, ��~w = ~0. Thus,by Lemma 4.19, we �nd that the (M; ~�)-process is null. Finally, if �(M; ~�) > 1, then (by thede�nition of �(M; ~�)) there exists a vector ~w and �0 > 1 such that (I�A)M ~w��0A~w is admissible.In particular, this implies that the vector ��~w = (I � A)M ~w � A~w is also admissible. ApplyingLemma 4.14, we conclude that the (M; ~�)-process is transient.Theorem 4.2 follows immediately from Lemma 4.13.13



4.1.1 Classi�cation Based on Drift of the PotentialWe now state and prove Lemmas 4.14, 4.17, and 4.19 which relate the drift of the potential to thebehavior of the backo� process (i.e., whether they are transient, null, or ergodic).Lemma 4.14 For an irreducible (M; ~�)-backo� process, if there exists an admissible ~w s.t ��~w isalso admissible, then the (M; ~�)-backo� process is transient.Proof. We start by showing that the potential �~w(succ(succ(��))) has a strictly larger expectationthan the potential �~w(��). This, coupled with the fact that changes in the potential are alwaysbounded in magnitude, allow us to apply martingale tail inequalities to the sequence f�~w(Ht)gtand claim that it increases linearly with time, with all but an exponentially vanishing probability.This allows us to prove that with positive probability the walk never returns to the initial history,thus ruling out the possibility that it is recurrent (ergodic or null). Details below.Claim 4.15 There exists � > 0 such that for all sequences H0; : : : ; Ht of positive probability in the(M; ~�; i)-Markov chain, E [�(Ht+2)� �(Ht)] > �:Proof. We start by noticing that the potential must increase (strictly) whenever Ht is the initialhistory. This is true, since in this case the backo� process is not allowed to backo�. Further, byirreducibility, there exists some state j with �j < 1 and Mij > 0. Thus the expected increase inpotential from the initial history is at least �1def=wjMij . Let �2 be the smallest non-zero entry of��~w. We show that the claim holds for � = minf�1; �2g.Notice �rst that both the quantities: E [�(Ht+1)� �(Ht)] and E [�(Ht+2)� �(Ht+1)] are non-negative (since ��~w is nonnegative). So it su�ces to prove that at least one of these quantitiesincreases by at least �. We consider several cases:Case 1: �top(Ht) < 1: In this case E [�(Ht+1)� �(Ht)] = ��~w;top(Ht) � �2, since ��~w isadmissible.Case 2: �top(Ht) = 1 and `(Ht) > 1: LetHt = h�0; : : : ; �l�1; �li. Note thatHt+1 = h�0; : : : ; �l�1i.Further, note that �top(Ht+1) < 1 (since only the top or bottom of the history stack can be states jwith �j = 1). Thus, in this case we have, E [�(Ht+2)� �(Ht+1)] � �2 (again using the admissibilityof ��~w).Case 3: �top(Ht) = 1 and `(Ht) � 1: In this case, either Ht or Ht+1 is the initial history, and insuch a case, the expected increase in potential is at least �1.Next we apply a martingale tail inequality to claim that the probability that the history is theinitial history (or equivalently the potential is zero) grows exponentially small with time.Claim 4.16 There exists c <1, � < 1 such that for every integer t � 0, the following holds:Pr[`(Ht) = 0] � c � �t:Proof. Since the potential at the initial history is zero, and the potential is expected to go up by �every two time steps, we have that the expected potential at the end of t steps (when t is even) is atleast �t=2. Further notice that the sequence �~w(H0);�~w(H2);�~w(H4); : : : ; form a submartingale,and that the change in �~w(Ht) is absolutely bounded: j�~w(Ht+2)��~w(Ht)j � 2 �maxi2f1;:::;ngfwig.Therefore, we can apply a standard tail inequality (Corollary A.5) to show that there exist constantsc <1, � < 1 such that Pr [�~w(Ht) = 0] � c � �t:14



The claim follows by noticing that if the history is the initial history, then the potential is zero.We use the claim above to notice that for any time T , the probability that the (M; ~�; i)-backo�process reaches the initial history after time T is at most P1t=T c � �t � c � �T=(1� �). Setting Tsu�ciently large, we get that this quantity is smaller than 1. Thus the probability that the given(M; ~�; i)-backo� process returns to the initial history after time T is bounded away from 1, rulingout the possibility that it is recurrent.Lemma 4.17 For an irreducible (M; ~�)-backo� process, if there exists an admissible ~w s.t ���~wis also admissible, then the (M; ~�)-backo� process is ergodic.Proof. First notice that we can modify the vector ~w so that it is positive and ��~w is negative,as follows: Let � be the smallest non-zero entry of ���~w. For every j such that �j = 1, setw0j = wj + �=2. The corresponding di�erence vector, ��~w0 , is at most �=2 larger than ��~w in anycoordinate; and thus entries that were already negative in ��~w remain negative in ��~w0 . On theother hand, for any j such that ��~w;j was 0 (implying �j = 1), the value of ��~w0;j is �w0j = ��=2.Thus all the zero entries are now negative.Henceforth we assume, without loss of generality, that ~w is positive and ��~w is negative. Letwmin denote the smallest entry of ���~w and wmax denote the largest entry of ~w. At this stage theexpected ~w-potential always goes down except when the history is an initial history. Notice thatwhen the history is an initial history, the expected increase is potential is at most wmax. To dealwith initial histories, we de�ne an extended potential.For a sequence H0; : : : ; Ht; : : : of the (M; ~�; i)-Markov chain, let N0(t) denote the number oftimes the initial history occurs in the sequence H0; : : : ; Ht�1. De�ne the extended potential  (t) = H0;:::;Ht;:::~w (t) to be  (t) = �~w(Ht)� (wmax+ wmin) �N0(t):By construction, the extended potential of a sequence is expected to go down by at at leastwmin in every step. Thus we have E[ (t)] � �wmin � t:Further, the sequence  (0); : : : ;  (t); : : : is a supermartingale and the change in one step is abso-lutely bounded. Thus, by applying a martingale tail inequality (Corollary A.6), we see that for any� > 0, with probability tending to 1 the extended potential after t steps is at most �(1� �)wmin � t.(More formally, for every �; � > 0, there exists a time t0 such that for every t � t0, the probabilitythat the extended potential  (t) is greater than �(1� �)wmin � t, is at most �.) Since the �~w partof the extended potential is always nonnegative, and each time the sequence reaches the initialhistory, the extended potential is reduced by at most (wmax + wmin), this implies that a sequencewith extended potential �(1� �)wmin � t must include at least (1� �) wminwmin+wmax � t initial histories.Assume for contradiction that the (M; ~�)-backo� process is null or transient. Then the expectedtime to return to an initial history is in�nite. Let Yi denote the length of the time between the(i� 1)st and ith visit to the initial history. By the law of large numbers (Proposition A.9), we �ndthat for every � > 0 and every c, there exists an integer N such that with probability at least 1� �,the �rst N visits to the initial history take more than cN steps. Setting � = 12 and c = 2 � wmin+wmax(1��)wminand t = cN , we see from the previous paragraph that with probability tending to 1, after t stepsthere are at least 2N initial histories. But we just showed that with probability at least 12 , the �rstN visits to the initial history take more than t steps. This is a contradiction. We conclude thatthe (M; ~�)-backo� process is ergodic.Before going on to characterize null processes, we prove a simple proposition that we will needin the next lemma. Let ri be the revocation probability, as in De�nition 4.36.15



Proposition 4.18 If an irreducible (M; ~�)-backo� process is transient, then there exists a state jwith revocation probability rj < 1.Proof. If every state has revocation probability 1, then the �rst step is revoked with probability1, indicating that the walk returns to the initial history with probability 1, making it recurrent.The converse is also true, but we do not need it, so we do not prove it.Lemma 4.19 For an irreducible (M; ~�)-backo� process, if there exists an admissible ~w s.t ��~w = ~0then the (M; ~�)-backo� process is null.Proof. We �rst de�ne an extended potential as in the proof of Lemma 4.17, but we will be a bitmore careful. Let � = E [�~w(H1)� �~w(H0)] be the expected increase in potential from the initialhistory. (Note � > 0.)For a sequence H0; : : : ; Ht; : : : of the (M; ~�; i)-Markov chain, let N0(t) denote the number ofoccurrences of the initial history in time steps 0; : : : ; t� 1, and let the extended potential  (t) begiven by  (t) = �~w(Ht)� � �N0(t):Notice that the extended potential is expected to remain unchanged at every step of the backo�process. Applying a martingale tail inequality again (Corollary A.4) we note that for every � > 0,there exists a constant c such that the probability that the extended potential  (t) is greater thancpt in absolute value is at most �. We will show that for an ergodic process the extended potentialgoes down linearly with time, while for a transient process the extended potential goes up linearlywith time - thus concluding that the given (M; ~�)-backo� process �ts in neither category.Claim 4.20 If the irreducible (M; ~�)-backo� process is transient, then there exist constants � > 0and b such that for every time t, it is the case thatE[ (t)] � �t � b:Proof. Let j be a state with rj < 1. Let n be the number of states of the Markov chain M .Notice that for each t and each history Ht, there is a positive probability that there exists a timet0 2 [t+1; t+n] such that top(Ht0) = j and the move from Ht0�1 to Ht0 is a forward step. Further,conditioned on this event there is a positive probability (of 1 � rj) that this move to j is neverrevoked. Thus in any interval of time of length at least n, there is a positive probability, say 
, thatthe (M; ~�; i)-backo� process makes a move that it never revokes in the future. Thus the expectednumber of such moves in t steps is 
t=n. Let wmin be the smallest non-zero entry of ~w. Then theexpected value of �~w(Ht) is at least (
t=n)wmin.We now verify that the expected value of � � N0(t) is bounded from above. This is an easyconsequence of a well-known property of transient Markov chains, which states that the expectednumber of returns to the start state (or any state) is �nite. Let this �nite bound on E[N0(t)] be B.Then for every t, we have E[� �N0(t)] � �B.Thus the expected extended potential after t steps is at least 
t=n� �B.Claim 4.21 If the irreducible (M; ~�)-backo� process is ergodic, then there exist constants 
 > 0and b such that for all t, E [ (t)] � �
t+ b:16



Proof. We �rst argue that the \�� �N0(t)" part of the extended potential goes down linearly withtime. Let Yj denote the time between the (j � 1)st and jth return to the initial history. Then theYj 's are independently and identically distributed and have a bounded expectation, say T . Thenapplying the law of large numbers (Proposition A.9), we have that there exists t0 such that for allt � t0 the probability that the number of visits to the initial history in the �rst t time steps is lessthan t=2T is at most 12 . Thus the expected contribution to the extended potential from this partis bounded above by �� � (t � t0)=(4T ).It remains to bound the contribution from E[�~w(Ht)]. Let f(t) denote the smallest nonnegativeindex such that the history Ht�f(t) is an initial history. Notice then that E[�~w(Ht)] is at mostwmax � E[f(t)]. We will bound the expected value of f(t). Let F (t) denote this quantity. Let p bethe probability distribution on the return time to an initial history, starting from H0. Recall thatPi ip(i) = T . Then F (t) satis�es the relation:F (t) = tXi=1 p(i)F (t� i) + 1Xi=t+1 tp(i):(If the �rst return to the initial history happens at time i and i > t, then f(t) = t, and if i � tthen f(t) = f(t� i).) We use this relation to prove, by induction on t, that: For every � > 0, thereexists a constant a such that F (t) � �t + a. Set a such that Pi>a ip(i) � �2T . The base cases ofthe induction are with t � a and these easily satisfy the hypothesis, since F (t) � t � a � �t + a.For t > a, we get: F (t) = tXi=1 p(i)F (t� i) + 1Xi=t+1 tp(i)� tXi=1 p(i)(�(t� i) + a) + 1Xi=t+1 tp(i)� 1Xi=1 p(i)�t� tXi=1 p(i)�i+ 1Xi=1 p(i)a+ 1Xi=t+1 ip(i)= �t + a� 1Xi=1 p(i)�i+ 1Xi=t+1(1 + �)ip(i)� �t + a� �T + (1 + �)(�=2)T� �t + a (Using � � 1).By selecting � su�ciently small (so that the overall coe�cient of t is negative), the claim follows.4.2 Existence of Cesaro Limit DistributionsIn this section we prove that the (M; ~�; i)-backo� process always has a Cesaro limit distribution.The proofs are di�erent for each case (ergodic, null and transient), and so we divide the discussionbased on the case. In the transient case, we prove even more (the existence of a stationary distri-bution, not just a Cesaro limit distribution, when the backo� process is aperiodic). As we showedearlier, there need not be a stationary distribution in the ergodic case, even when the backo� pro-cess is aperiodic. It is an open problem as to whether there is always a stationary distribution inthe aperiodic null case (we conjecture that there is).17



4.2.1 Ergodic CaseThe simplest argument is for the ergodic case.Theorem 4.22 If the (M; ~�; i)-backo� process is ergodic, then it has a Cesaro limit distribution.Proof. Since the Polish matrix is ergodic, the corresponding Markov process has a Cesaro limit.This gives us a Cesaro limit in the backo� process, where the probability of state i is the sum ofthe probabilities of the states (stacks) in the Polish matrix with top state i.4.2.2 Transient CaseNext, we consider the transient case (where the Polish matrix is transient). The crucial notionunderlying the analysis of this case is that of \irrevocability". When the backo� process is in astate (with a given stack), and that state is never popped o� of the stack (by taking a backedge),then we refer to this (occurrence of the) state as irrevocable. Let us �x a state i, and considera renewal process (see De�nition A.7), where each new epoch begins when the process has anirrevocable occurrence of state i. Since the Polish matrix is transient, the expected length of anepoch is �nite. The limit probability distribution of state j is the expected number of times thatthe process is in state j in an epoch, divided by the expected length of an epoch. This argumentis formalized below, to obtain a proof of the existence of a Cesaro limit distribution.Theorem 4.23 If the (M; ~�; i)-backo� process is transient, then it has a Cesaro limit distribution,which is independent of the start state i. If it is aperiodic, then it has a stationary distribution.Proof. Since the Polish matrix is transient, we know that for each state �� of the Polish matrix(which is a stack of states of the backo� process) where the top state top(��) has �top(��) 6= 1, thereis a positive probability, starting in ��, that the top state top(��) is never popped o� of the stack.It is clear that this probability depends only on the top state top(��) of the stack ��.When the backo� process is in a state (with a given stack), and that state is never popped o�of the stack (by taking a backedge), then we refer to this (occurrence of the) state as irrevocable.Technically, an irrevocable state should really be thought of as a pair consisting of the state (of thebacko� process) and the time, but for convenience we shall simply refer to the state itself as beingirrevocable.We now de�ne a new matrix, which we call the Turkish matrix, which de�nes a Markov chain.Just as with the Polish matrix, the states are again stacks of states of the backo� process, butthe interpretation of the stack is di�erent from that of the Polish matrix. In the Turkish matrix,the stack h�0; : : : ; �`i represents a situation where �0 is irrevocable, and where �1; : : : ; �` are notirrevocable. The intuition behind the state h�0; : : : ; �`i is that the top states of the stack of thePolish matrix (from �0 on up) are �0; : : : ; �`. As with the Polish matrix, the states h�0; : : : ; �`i ofthe Turkish matrix are restricted to being the attainable ones: in this case this means (a) ��j 6= 1for 0 � j < `; (b) ��j 6= 0 for 1 � j � `; and (c) M�i�i+1 > 0 for 0 � i < `. There is a subtletyif the start state i has �i = 1, since then the state hii is not reachable from any other state, andso we do not consider it to be a state of the Turkish matrix. One way around this issue is simplyto assume that the start state i has �i 6= 1. It is not hard to see this assumption is without loss ofgenerality, since the backo� process will reach an irrevocable state j (which necessarily has �j 6= 1)with probability 1.We now de�ne the entries of the Turkish matrix T . If �� and ��0 are states of the Turkish matrix,then the entry T����0 is 0 unless either (a) ��0 is the result of popping the top element o� of the stack18



��, (b) ��0 is the result of pushing one new element onto the stack ��, or (c) both �� and ��0 eachcontain exactly one element. The probabilities are those induced by the backo� process. Thus,in case (a), if ` � 1, then Th�0;:::;�`ih�0;:::;�`�1i equals the probability that the backo� process takesa backedge from �`, given that the last irrevocable state was �0, that the stack from �0 on upis h�0; : : : ; �`i, and that the remaining states �1; : : : ; �`�1 on the stack are not irrevocable. Thatthis conditional probability is well-de�ned (and is independent of the time) can be seen by writingPr [A j B] as Pr [A ^ B] =Pr [B]. Note that even though this conditional probability represents theprobability of taking a backedge from state �`, it is not necessarily equal to ��` , since the eventof taking the backedge is conditioned on other events, such as that �0 is irrevocable. Similarly, incase (b), we have that Th�0;:::;�`ih�0;:::;�`+1i equals the probability that the backo� process takes aforward edge from �` to �`+1 and that �`+1 is not irrevocable, given that the last irrevocable statewas �0, that the stack from �0 on up is h�0; : : : ; �`i, and that the remaining states �1; : : : ; �` onthe stack are not irrevocable. Finally, in case (c) we have that Th�0ih�00i equals the probability thatthe backo� process takes a forward edge from to �0 to �00 and that �00 is irrevocable, given that �0is irrevocable.We now show that the Turkish matrix is irreducible, aperiodic (if the backo� process is aperi-odic), and (most importantly) ergodic.We �rst show that it is irreducible. We begin by showing that from every state of the Turkishmatrix, it is possible to eventually reach each (legal) state h�0i with only one element in the stack(by \legal", we mean that ��0 6= 1). This is because in the backo� process, it is possible toeventually reach the state �0, because the backo� process is irreducible; further, it is possible thatonce this state �0 is reached, it is then irrevocable. Next, from the state h�0i, it is possible toeventually reach each state h�0; : : : ; �`i with bottom element �0. This is because it is possible totake forward steps from �0 to �1, then to �2, ..., and then to �`, with each of the states �1; �2; : : : ; �`being non-irrevocable (they can be non-irrevocable, since it is possible to backup from �` to �`�1... to �0). Combining what we have shown, it follows that the Turkish matrix is irreducible.We now show that the Turkish matrix is aperiodic if the backo� process is aperiodic. Let i bea state with �i 6= 1. Since the backo� process is aperiodic, the gcd of the lengths of all paths fromi to itself is 1. But every path from i to itself of length k in the backo� process gives a path fromhii to itself of length k in the Turkish matrix (where we take the arrival in state i at the end of thepath to be an irrevocable state). So the Turkish matrix is aperiodic.We now show that the Turkish matrix is ergodic. It is su�cient to show that for some state ofthe Turkish matrix, the expected time to return to this state from itself is �nite. We �rst show thatthe expected time between irrevocable states is �nite. Thus, we shall show that the expected time,starting in an irrevocable state �0 in the backo� process at time t0, to reach another irrevocablestate is �nite. Let Ek be the event that the time to reach the next irrevocable state is at least ksteps (that is, takes place at time t0 + k or later, or does not take place at all after time t0). It issu�cient to show that the probability of Ek is O(�k) for some constant � < 1. Assume that theevent Ek holds. There are now two possible cases. Case 1: There are no further irrevocable states.In this case, the size of the stack (state) in the Polish matrix is one bigger than it was at time t0in�nitely often. Case 2: There is another irrevocable state, that occurs at time t0 + k or later.Assume that it occurs for the �rst time at time t0+ k0, where k0 � k. It is easy to see that the sizeof the stack in the Polish matrix at time t0 + k0 is one bigger than it was at time t0. So in bothcases, there is k0 � k such that after k0 steps, the size of the stack in the Polish matrix has grownby only one.Now since the Polish matrix is transient, we see from Section 4.1 that we can de�ne a potentialsuch that there is an expected positive increase in the potential at each step. So by a submartingaleargument (Corollary A.5), there are positive constants c1; c2 such that the probability that the19



size of the stack in the Polish matrix has grown by only one after k0 steps is at most c1e�c2k0 .Therefore, the probability that there is some k0 � k such that that the size of the stack in the Polishmatrix has grown by only one after k0 steps is at most Pk0�k c1e�c2k0 = c1e�c2kP1m=0 e�c2m =c1(1=(1� e�c2 ))e�c2k . Let � = e�c2 . So the probability of Ek is O(�k), as desired.We have shown that the expected time between irrevocable states is �nite. So starting in stateh�0i of the Turkish matrix, there is some state �1 such that the expected time to reach h�1i fromh�0i is �nite. Continuing, we see that there is some state �2 such that the expected time to reachh�2i from h�1i is �nite. Similarly, there is some state �3 such that the expected time to reach h�3ifrom h�2i is �nite, and so on. Let n be the number of states in the backo� process. Then somestate � appears at least twice among �0; �1; : : : ; �n. Hence, the expected time from h�i to itself inthe Turkish matrix is �nite. This was to be shown.We have shown that the Turkish matrix is irreducible and ergodic. So it has a Cesaro limitdistribution. This gives us a Cesaro limit distribution in the backo� process, where the probabilityof statem is the sum of the probabilities of the stacks in the Turkish matrix with top statem. Sincethe Turkish matrix is the same, independent of the start state i, this probability does not dependon the start state.5 If the backo� process is aperiodic, then the Turkish matrix has a stationarydistribution, and hence so does the backo� process.4.2.3 Null CaseFinally, we consider the null case. In this case our proof is based on a surprising property of arecurrent (ergodic or null) (M; ~�; i)-backo� process: Its steady state distribution turns out to beindependent of �i (the backo� probability of the start state). We exploit this property ( which willbe proved implicitly in Lemma 4.25 below) as follows: We select a state j where �j 6= 1. Let usconsider a new backo� process, where the underlying Markov matrix M is the same; where all ofthe backo� probabilities �k are the same, except that we change �j to 1; and where we change thestart state to j. This new backo� process can be shown to be ergodic. We show a way of \pastingtogether" runs of the new ergodic backo� process to simulate runs of the old null process. Thereby,we show the remarkable fact that the old null process has a Cesaro limit distribution which is thesame as the Cesaro limit distribution of the new ergodic process.Theorem 4.24 If the (M; ~�; i)-backo� process is null, then it has a Cesaro limit distribution, whichis independent of the start state i.As before, we can assume without loss of generality that the (M; ~�; i)-backo� process is irre-ducible, since we can easily restrict our attention to an irreducible \component".The theorem follows from Lemma 4.25 below, which asserts that the limit distribution existsand equals the limit distribution of a related ergodic process, and is independent of the start state i.Lemma 4.25 Let (M; ~�) be null. Let j be any state of M such that �j < 1. Let ~�0 be the vectorgiven by �0j = 1 and �0j0 = �j0 otherwise. Then the (M; ~�0; j)-backo� process is ergodic and hencehas a Cesaro limit distribution. Let i be any state of M . Then the (M; ~�; i)-backo� process has aCesaro limit distribution which is the same as the Cesaro limit distribution of the (M; ~�0; j)-backo�process.Proof. The �rst part of Lemma 4.25 claiming that (M; ~�0) is ergodic, follows from the �rst part ofTheorem 4.5, and is proven in Claim 4.28. We now move to the more di�cult part. It is convenient5As mentioned earlier, there is a subtlety if the start state i has �i = 1. It is not hard to see that this independenceof the Cesaro limit probabilities on the start state holds even then.20



for us to use the term walk, which refers to the sequence of states visited (along with the informationabout the auxiliary sequence that tells whether each move was a forward or backward step, and thehistory sequence). For this part, we consider a walk W of length t of the (M; ~�; i)-backo� processand break it down into a number of smaller pieces. This breakdown is achieved by a \skeletaldecomposition" as de�ned below.Fix an (M; ~�; i)-walk W with hX0; : : : ; Xti being the sequence of states visited, with auxiliarysequence hS0; : : : ; Sti and associated history sequence hH0; : : : ; Hti.For every t1 � t such that St1 = F (i.e., W makes a forward step at time t1), we de�ne apartition of W into two walks W 0 and W 00 as follows: Let j be the state pushed onto the historystack at time t1 and let Ht1 = �� be the history stack at time t1. Let t2 > t1 be the �rst timeat which this history repeats itself (t2 = t if this event never happens). Consider the sequenceh0; : : : ; t1; t2 + 1; : : : ; ti of time steps (and the associated sequence of states visited and auxiliarysequences). They give a new (M; ~�; i)-walkW 0 that has positive probability. On the other hand thesequence ht1; t1+1; : : : ; t2i of time steps de�nes a walk W 00 of an (M; ~�; j)-backo� process, of lengtht2 � t1, with initial history being hji. We call this partition (W 0;W 00) a j-division of the walk W .(Notice thatW 0;W 00 do not su�ce to recoverW , and this is �ne by us.) A j-decomposition of a walkW is an (unordered) collection of walks W0; : : : ;Wk that are obtained by a sequence of j-divisionsof W . Speci�cally, W is a j-decomposition of itself. Further, if (a) W0; : : : ;Wl is a j-decompositionof W 0, (b) Wl+1; : : : ;Wk is a j-decomposition of W 00, and (c) (W 0;W 00) is a j-division of W , thenW0; : : : ;Wk is a j-decomposition of W . If a walk has no non-trivial j-divisions, then it is said tobe j-indivisible. A j-skeletal decomposition of a walk W is a j-decomposition W0; : : : ;Wk of W ,where each Wl is j-indivisible. Note that the skeletal decomposition is unique and independent ofthe choice of j-divisions. We refer to W0; : : : ;Wk as the skeletons of W . Note that the skeletonscome in one of three categories (assuming j 6= i).� Initial skeleton: This is a skeleton that has hii as its initial history. Note that there is exactlyone such skeleton (unless i = j, in which case we say that there is no initial skeleton). Wedenote the initial skeleton by W0.� Closed skeletons: These are the skeletons with hji as their initial and �nal history.� Open skeletons: These are the skeletons with hji as their initial history, but not their �nalhistory.Our strategy for analyzing the frequency of the occurrence of a state j 0 in the walk W is todecompose W into its skeletons and then to examine the relative frequency of j 0 in these skeletons.Roughly we will show that not too much time is spent in the initial and open skeletons; and thatthe distribution of closed skeletons of W is approximated by the distribution of random walksreturning to the initial history in an (M; ~�0; j)-backo� process. But the (M; ~�0; j)-backo� processis ergodic, and thus the expected time to return to the initial history in such walks is �nite. Witha large number of closed j-skeletons, the frequency of occurrence of j 0 converges (to its frequencyin (M; ~�0; j)-backo� processes).Consider the following:Simulation of W .1. Pick an (in�nite) walk W 00 from the (M; ~�0; i)-backo� process.2. Pick a sequence W 01;W 02; : : : ; of walks as follows: For each k, the walk W 0k starts at hji andwalks according to (M; ~�0; j) and terminates the �rst time it returns to the initial history.21



3. We now cut and paste from the W 0i 's to get W as follows:(a) We initialize W = W 00 and t0 = 0, N = 0.(b) We iterate the following steps till t0 � t:i. Let t00 be the �rst visit to j occurring at some time after t0 in W . Set t0 = t00.ii. With probability �j do nothing, else (with probability 1� �j), set N = N + 1 andsplice the walk W at time t0 and insert the walk W 0N into W at this time point.(c) Truncate W to its �rst t steps and output it. Further, let Wi denote the truncation ofW 0i so that it includes only the initial portion of W 0i that is used in W .The following proposition is easy to verify.Proposition 4.26 W generated as above has exactly the same distribution as that of the (M; ~�; i)-backo� process. Further W0; : : : ;WN give the j-skeletal decomposition of W .Let W 0 denote a random walk obtained by starting at hji, walking according to (M; ~�0; j) andstopping the �rst time we reach the initial history. Since the (M; ~�0; j)-backo� process is ergodic,the expected length of W 0 is �nite. Let � denote the expectation of the length of the walk W 0and let �j0 denote the expected number of occurrences of the state j 0 in W 0. By Theorem A.8�j0=� = �0j0 , where �0 denotes the Cesaro limit distribution of the (M; ~�0; j)-backo� process.Let a0k denote the number of visits to j 0 in W 0k and let b0k denote the length of W 0k . Since thewalks W 0k (k 2 f1; : : : ; Ng) are chosen independently from the same distribution as W 0, we havethat the expectation of a0k is �j0 and the expectation of b0k is �. Let ak denote the number of visitsto j 0 in Wk and let bk denote the length of Wk . Notice our goal is to show that PNk=0 ak=PNk=0 bkapproaches �0j0 with probability tending to 1 as t tends to in�nity. Fix any � > 0. We will enumeratea number of bad events, argue that each one of them has low probability of occurrence and thenargue that if none of them happen, then for N su�ciently large,(1� �)�0j0 � NXk=0ak= NXk=0 bk � (1 + �)�0j0 ;1. N is too small: In Claim 4.29 we show that this event has low probability. Speci�cally, thereexists � > 0 such that for every � > 0 there exists t0 such that for all t � t0, the probabilitythat N is less than �t is at most �.2. W0 is too long: Claim 4.30 shows that for every � > 0, there exists t1 such that for all t � t1,the probability that W0 is longer than �t is at most �.3. There are too many open skeletons: In Claim 4.32, we prove that for every �0 > 0, there existst2 such that if t � t2, then the probability that the number of open skeletons is more than�0t is at most �0.4. PNk=1 bk is too large: By the law of large numbers (Proposition A.9), we have that for every� > 0, there exists N1 such that for all N � N1, the probability that PNk=1 b0k � (1 + �)�N isat most �. Using the fact that bk � b0k, we obtain the same upper bound on Pk bk as well.5. PNk=1 ak is too large: As above, we have that we have that for every � > 0, there exists N2such that for all N � N2, the probability that PNk=1 ak � (1 + �)�j0N is at most �.22



6. (Informally)PNk=1 bk is too small: The �rst formal event considered here is that for some largesubset S � f1; : : : ; Ng, the quantity Pk2S b0k turns out to be too small. Using the fact thatthe b0k's are independently and identically distributed and have �nite mean �, Claim 4.34 canbe used to show that for every � > 0, there exists �1 > 0 and N3 > 0, such that for all N � N3the probability that there exists a subset S � f1; : : : ; Ng of cardinality at least (1 � �1)Nsuch that Pk2S b0k � (1 � �)�N is at most �. Taking S to be the subset of closed skeletonsand using the fact that for a closed skeleton bk = b0k, and relying on the negation of item (3),we get to the informal claim here.7. PNk=1 ak is too small: Obtained as above. Speci�cally, for every � > 0, there exists �2 > 0 andN4 > 0, such that for all N � N4 the probability that there exists a subset S � f1; : : : ; Ngof cardinality at least (1� �2)N such that Pk2S a0k � (1� �)�N is at most �.Given the above claims, the lemma may be proved as follows: Let � be as in item (1) above.Given any �, let � = minf�=7; �=(2 + 1=(��)); �=(2 + 1=(�j0�) + �)g. Let �1 and �2 be as givenin items (6) and (7) above and let �0 = minf�; �1�; �2�g. For these choices of � and �0, lett0; t1; t2; N1; N2; N3; N4 be as given in items (1)-(7) and take t � maxft0; t1; t2; 1�N1; 1�N2; 1�N3; 1�N4g.Then since t is large enough, we have that for any of items (1), (2), or (3) the probability thatthe bad event listed there happens is at most �. If the bad event of item (1) does not occur, thenN � fN1; N2; N3; N4g and thus the probability of any of the bad events list in items (3)-(7) is atmost �. Summing over all bad events, we have the probability that no bad events happens is atleast 1� 7� � 1� �. We now reason that if none of these events happen then PNk=0 akPNk=0 bk is between(1� �)�0j0 and (1 + �)�0j0 . We show the lower bound; the proof of the upper bound is similar. We�rst give an upper bound forPNk=0 bk by the negations of items (2) and (4). By the negation of item(2), b0 � �t � ��N (where the second inequality uses the negation of item (1).) By the negation ofitem (4),PNk=1 bk � (1 + �)�N and thus we haveNXk=0 bk � (1 + � + �=(��))�N:Next we give a lower bound on PNk=0 ak. Here we use the negation of item (3) to conclude thatthe number of closed skeletons is at least N � �0t � N � (�0=�)N � (1� �2)N . Let S denote thecollection of closed skeletons. Thus, we haveNXk=0 ak � Xk2S ak = Xk2S a0k � (1� �)�j0N:Putting the above together, we getPNk=0 akPNk=0 bk � 1� �1 + �+ �=(��) �j0� � (1� �)�0j0 ;as desired. (The �nal inequality above uses �0j0 = �j0=� and � � �=(2+1=(��)).) The upper boundfollows similarly, using the inequality � � �=(2 + 1=(�j0�) + �). This concludes the proof of thelemma, modulo Claims 4.28-4.34.For the following claims, let H denote the Hungarian matrix corresponding to the (M; ~�)-backo�process and let H 0 denote the Hungarian matrix corresponding to the (M; ~�0)-backo� process. For23



a nonnegative matrix A, let �(A) denote its maximal eigenvalue. For n� n matrices A and B, sayA < B if Aik � Bik for every i; k and there exists i, k such that Aik < Bik . Claim 4.28 will use thefollowing simple claim.Claim 4.27 If A and B are n� n irreducible nonnegative matrices such that A < B, then �(A) <�(B).Proof. Notice �rst that it su�ces to prove that �(I +A) < �(I +B), since �(I +M) = 1 + �(M).Similarly it su�ces to prove that for some positive integer k, we have �((I + A)k) < �((I + B)k),since �(Mk) = �(M)k. We will do so for k = 2n� 1. Let C = (I +A)2n�1 and D = (I +B)2n�1.We �rst show that for every pair i; j, we have Cij < Dij . (By contrast, we know only that thestrict inequality Aij < Bij holds for some pair i; j.) Notice that the (i; j) entry of a matrixMk hasthe following combinatorial interpretation: It counts the sum of the weights of all walks of length kbetween i and j, where the weight of a walk is the product of the weight of the edges it takes, andwhere the weight of an edge (u; v) is Muv . Thus we wish to show that for every i; j, there exists awalk P from i to j of length 2n� 1 such that its weight under I +A is less than its weight underI + B. By assumption, there are l;m so that Alm < Blm. By irreducibility of A we know thereexists a path from i to l of positive weight and by taking enough self-loops this can be convertedinto a path P1 of length exactly n � 1 with positive weight in (I + A). The path has at least thesame weight in I + B. Similarly we can �nd a path P2 of positive weight in I + A from m to j oflength exactly n � 1. Now the path P1 � (l;m) � P2 has positive weight in both I + A and I + Band has strictly larger weight in I + B since Blm > Alm. Thus we �nd that Cij < Dij , for everypair i; j.Now we use the properties of the maximal eigenvalue to show that �(C) < �(D). Notice that�(C) = max~x mini2f1;:::;ng�(C~x)i(~x)i � :Pick ~x that maximizes the right hand side above and now consider�(D) = max~y mini2f1;:::;ng�(D~y)i(~y)i �� mini2f1;:::;ng� (D~x)i(~x)i �> mini2f1;:::;ng� (C~x)i(~x)i � (Since Dij > Cij and ~x 6= 0).= �(C)(By our choice of ~x.)We are now ready to prove that the (M; ~�0)-backo� process is ergodic.Claim 4.28 Let (M; ~�) be irreducible and null. Let j be a state such that �j < 1. Assume that�0j > �j and �0j0 = �j0 if j 0 6= j. Then (M; ~�0) is ergodic (though it may not be irreducible).Proof. We �rst focus on the case �0j < 1. In this case, we observe that (M; ~�0) is also irreducible.For this part, we use Lemma 4.13 and Claim 4.12 to rephrase this question in terms of the maximaleigenvalues of the corresponding Hungarian matrices H (for (M; ~�)) and H 0 (for (M; ~�0)). Inparticular, we have �(H) = 1 and we need �(H 0) < �(H) = 1.24



Note that for every k; l, we haveH 0kl = (1� �0k)Mkl�0�1l� (1� �0k)Mkl��1l� (1� �k)Mkl��1l= HklFurther, the �rst inequality is strict if l = j and Mkj 6= 0 (and such a k does exist, by theirreducibility of M). Using Claim 4.27 we now have �(H 0) < �(H) = 1. and thus we have shownthe desired result for the case �0j < 1.For the case �0j = 1, we �rst use the �rst part shown above to show that the (M; ~�00)-backo�process, where �j < �00j < 1 (and �00j0 = �j0 for other j 0), is ergodic. Thus it su�ces to prove that(M; ~�0) is ergodic, given that (M; ~�00) is ergodic. However, since we may not have irreducibility, weneed to argue this individually for every (M; ~�0; i)-backo� process. Now the expected return timeof the (M; ~�00; i)-backo� process (to its initial history) is �nite. But it is not hard to see that theexpected return time of the (M; ~�0; i)-backo� process (to its initial history) is bounded above bythe expected return time of the (M; ~�00; i)-backo� process, since it can only cost additional steps tonot pop j immediately o� the history stack whenever it appears. So the (M; ~�0; i)-backo� processis ergodic, as desired.Claim 4.28 gives the �rst part of Theorem 4.5. The proof of the second part is similar, provided�j is not lowered to �0j = 0 (in which case the Hungarian matrix would not be de�ned). But if�0j = 0, then the resulting backo� process is certainly transient.The next claim shows that N , the number of skeletons in a walk of length t, grows linearly in t.Claim 4.29 There exists � > 0, such that for every � > 0 there exists t0 such that for all t � t0,the probability that N is less than �t is at most �.Proof. Notice that the number of skeletons is lower bounded by the number of times j is pushedonto the history stack in the walk W . We lower bound this quantity by using the fact that in anysequence of n steps (where n is the size of the Markov chain M), there is a positive probability � ofpushing j onto the history stack. Thus the expected number of times j is pushed onto the historyin t steps is at least �(t=n). Applying the law of large numbers (Proposition A.9), we get that thereexists t0 such that if t � t0, then the probability that j is pushed on the stack fewer than 12�(t=n)times is at most �. The claim follows with � = �2n .Next we argue that the initial skeleton is not too long.Claim 4.30 For every � > 0, there exists a time t1 such that for all times t > t1,Pr[ Length of W0 > �t] < �:Proof. We prove the claim in two steps. First we note that in a walk of length t, with highprobability, the (null) (M; ~�; i)-backo� process returns to the initial history o(t) times. Note thatthe expected time to return to the initial history is in�nite. Thus we get:Subclaim 1: For every �0 > 0, there exists a time t01 such that for all t > t01, the probability thatan (M; ~�; i)-walk of length t returns to the initial history at least �0t times is at most �0.The next subclaim follows from the law of large numbers (Proposition A.9).25



Subclaim 2: Let T be the expected return time to the initial history in the (M; ~�0; i)-backo�process. (Note that T <1, since the (M; ~�0; i)-backo� process is ergodic.) Then for every �00, thereexists N0 such that if N � N0 and N 0 � N , then the probability that N 0 returns to the initialhistory take more than 2NT steps is at most �00.From the two subclaims, we get the claim as follows: Set �00 = �=2 and�0 = minf�=2; �=(2T )g. Now let N0 and T be as in Subclaim 2 and let t0 = maxft01; 2N0T� g.Given t � t0, let N = (�t)=(2T ). Notice N � N0. Applying Subclaim 1, we get that the probabilitythat the number of returns to the initial history in the (M; ~�; i)-backo� process is at least N(= (�t)=(2T ) � �0t) is at most �0 � �=2. Now applying Subclaim 2, we get that the probability ofN returns to the initial history taking more that 2NT = �t steps in the (M; ~�0; i)-backo� processis at most �00 = �=2. So with probability at least 1 � �, neither of the bad events in the subclaimsoccurs, which means that there are less than N returns to the initial history in the initial skeleton,and even N returns would take time at most �t steps. So with probability at least 1� �, the lengthof the initial skeleton is is at most �t. This proves the claim.Next we show that not too many skeletons are open. We do it in two claims.Claim 4.31 If (M; ~�; i) is null, and ~w is a weight vector as guaranteed to exist by Lemma 4.13,then the ~w-potential �~w(Ht) is expected to grow as o(t).Proof. Recall that the extended potential used in Lemma 4.17 is expected to be 0 after t steps.Further, by Subclaim 1 of Claim 4.30, the number of returns to the initial history is less than �0t,with probability all but �0. Thus the expected number of returns to the initial history is at most2�0t. Hence, the expected value of �~w(Ht) is also at most 2�0t.Claim 4.32 For every � > 0, there exists t2 such that for all t � t2, the probability that more than�t of the skeletons W1; : : : ;WN are open at time t is at most �.Proof. Consider the event E that the history Ht contains more than �t occurrences of the state j.We wish to show that the probability that E occurs is at most �. Assume E occurs with probabilityat least �. Let ~w be the weight vector as shown to exist in Lemma 4.13, and let �~w(Ht) be thepotential of the history Ht. Notice that if E occurs, then the potential �~w(Ht) is at least wj�t.Since E happens with probability at least �, the expected potential E[�(Ht)] is at least �2wjt, andso is growing linearly in t. But this contradicts the previous claim.We now use our machinery to prove a lemma that we need to prove Theorem 4.35.Lemma 4.33 In a null backo� process, for every � > 0, there exists t2 such that for all t � t2, theprobability that more than �t of the forward edges into state j are unrevoked at time t is at most �.Proof. If �j < 1, then every unrevoked edge into state j corresponds, in the machinery we havejust developed, to a di�erent open skeleton. The result then follows from Claim 4.32. If �j = 1,then every forward edge into state j is immediately followed by a revocation, so the result againfollows.Finally, we conclude with a technical claim showing that large subsets of f1; : : : ; Ng have alarge sum with high probability. 26



Lemma 4.34 For every distribution D on nonnegative integers with �nite expectation �, and every� > 0, there exists �1 > 0 and N3 > 0 such that for all N � N3, if X1; : : : ; XN are N samplesdrawn i.i.d. from D, thenPr "Xi2SXi � (1� �)�N for every S � [N ] with jSj � (1� �1)N# � 1� �:Proof. We will �nd �1 and pick � such that with high probability the (�1N)th largest element ofX1; : : : ; XN is greater than or equal to � . We will then sum only those elements in the Xi's whosevalue is at most � and this will give a lower bound on Pi2S Xi.Let p(j) be the probability given to j by D. Let �k =Pj�k jp(j). Notice that the �k's convergeto �. Let � be such that � � �� � (�=2)�. Let T (X) = X if X � � and 0 otherwise. Notice thatfor X drawn from D, we have E[T (X)]� (1� �=2)� (by de�nition of �). Thus by the law of largenumbers (Proposition A.9), there exists N 03 such that for all N � N 03, the following holds.Pr" NXi=1 T (Xi) � (1� �)N�# � �=2: (4)Now set �1 = Pj>� p(j)=2. Then the probability that X has value at least � is at least 2�1.Thus, applying the law of large numbers (Proposition A.9) again, we �nd that there exists N 003 suchthat for all N � N 003 , the following holds:Pr [jfijXi � �gj < �1N ] � �=2: (5)Thus, for N3 = maxfN 03; N 003 g and any N � N3, we have that with probability at least 1 � �neither of the events mentioned in (4) or (5) occur. In such a case, consider any set S of cardinalityat least (1� �1)N , and let S 0 be the set of the (1� �1)N smallest Xi's. We haveXi2SXi � Xi2S0Xi� NXi=1 T (Xi)� (1� �)N�:This proves the claim.4.3 Computation of Limit DistributionsWe now show how the limit distribution may be computed. We can assume without loss of generalitythat the backo� process is irreducible, since we can easily restrict our attention to an irreducible\component". Again, we branch into three cases.4.3.1 Null CaseThe matrix H = (I � A)MA�1, which we saw in Section 4.1), plays an important role in thissection. We refer to this matrix as the Hungarian matrix of the (M; ~�)-backo� process. The nexttheorem gives an important application of the Hungarian matrix.Theorem 4.35 The limit probability distribution � satis�es � = �H. This linear system has aunique solution subject to the restriction Pi �i = 1. Thus, the limit probability distribution canfound by solving a linear system. 27



Proof. The key ingredient in the proof is the observation that in the null case, the limit probabilityof a transition from a state i to a state j by a forward step is the same as the limit probabilityof a transition from state j to a state i by a backward step (since each forward step is eventuallyrevoked, with probability 1). Thus if we let �i!j denote the limit probability of a forward stepfrom i to j and �i j denote the limit probability of a backward step from j to i (and �i denotesthe limit probability of being in state i), then the following conditions hold:�i =Xj �i!j +Xj �j i; �i!j = (1� �i)Mij�i; �i!j = �i j :The only controversial condition is the third one, that �i!j = �i j . The fact that �i j existsand equals �i!j follows easily from Lemma 4.33. Manipulating the above conditions shows that �satis�es � = �H .We now consider uniqueness. Assume �rst that �i < 1 for every i. Then H is irreducible andnonnegative and thus by the Perron-Frobenius Theorem (Theorem A.1), it follows easily that � isthe unique solution to the linear system. If some �i = 1, we argue by focusing on the matrix H j�,which is irreducible (as in Section 4.1, H j� is the principal submatrix of H containing only rowsand columns corresponding to i such that �i < 1). Renumber the states of M so that the �i's arenon-decreasing. Then the Hungarian matrix looks as follows:H =  H j� X0 0 ! ;where H j� is nonnegative and irreducible and X is arbitrary. Write � = (�A�B), where �B hasthe same number of elements as the number of �i's that are 1. Then the linear system we have tosolve is (�A�B) = (�A�B) H j� X0 0 ! :This system can be solved by �nding �A = �AH j� and then setting �B = �AX . Now �B isuniquely determined by �A. Furthermore, �A is uniquely determined, by the Perron-FrobeniusTheorem (Theorem A.1). This concludes the proof of the theorem.4.3.2 Ergodic CaseIn this case also the limit probabilities are obtained by solving linear systems, obtained from arenewal argument. We de�ne \epochs" starting at i by simulating the backo� process as follows.The epoch starts at an initial history with X0 = hii. At the �rst step the process makes a forwardstep. At every subsequent unit of time, if the process is back at the initial history, it �rst 
ips acoin that comes up B with probability �i and F otherwise. If the coin comes up B, the end of anepoch is declared.Notice that the distribution of the length of an epoch starting at i is precisely the same as thedistribution of time, starting at an arbitrary non-initial history with i on top of the stack, untilthis occurrence of i is popped from the stack, conditioned on the fact that the �rst step taken fromi is a forward step.Let Ti denote the expected length of (or more precisely, number of transitions in) an epoch,when starting at state i. Let Nij denote the expected number of transitions out of state j inan epoch when starting at state i. From Theorem A.8 we see that the Cesaro limit probabilitydistribution vector �(i), for an (M; ~�; i)-backo� process, is given by �(i)j = Nij=Ti, provided Ti is28



�nite. This gives us a way to compute the Cesaro limit distribution. The key equations that allowus to compute the Nij and Ti are:Ti = 1 +Xk Mik[�k � 1 + (1� �k)(Tk + 1)] + (1� �i)Ti; (6)Nij = �ij +Xk Mik [�k � �jk + (1� �k)(Nkj + �jk)] + (1� �i)Nij; (7)where �ij = 1 if i = j and 0 otherwise. (The above equations are derived by straightforwardconditioning. For example, if the �rst step in the epoch takes the process to state k, then it takesTk units of time to return to hii and then with probability (1 � �i) it takes Ti more steps to endthe epoch.)We claim that the �rst set (6) of linear equations completely specify T . We argue this as follows.First we may rearrange terms in the equation, and use the fact that PkMik = 1, to simplify (6)to: �iTi = 2 +Xk (1� �k)MikTk:Dividing both sides by �i (we know that no �i = 0 in the ergodic case), moving all terms involvingTk to the left, and using the fact that the Hungarian matrix H is given by Hik = 1��k�i Mik, we get:Ti �Xk HikTk = 2�i :Letting ~T = hT1; : : : ; Tni and ~b = h2=�1; : : : ; 2=�ni, we get (I � H)~T = ~b. Since the maximaleigenvalue of H is less than 1, we know that I�H has an inverse (and is given by I+H+H2+ � � �)and thus ~T is given by (I �H)�1~b.Similarly, if we let ~Nj = hN1j; : : : ; Nnji and ~bj = h �1j+M1j�1 ; : : : ; �nj+Mnj�n i, then (7) simpli�es toyield ~Nj = (I �H)�1~bj .Thus ~T and the ~Nj 's can be computed using the above linear equations. Using now the formula�(i)j = Nij=Ti, we can also compute the stationary probability vectors.4.3.3 Transient CaseWe now prove Theorem 4.4.De�nition 4.36 For a state j, de�ne the revocation probability as follows: Pick any non-initialhistory �� = h�0; : : : ; �li with top(��) = j. The revocation probability rj is the probability that the(M; ~�; i)-Markov chain starting at state �� reaches the state ��0 = h�0; : : : ; �l�1i. (Notice that thisprobability is independent of i, l, and �0; : : : ; �l�1; thus, the quantity is well-de�ned.)Note that ri is the probability that an epoch starting at i, as in Section 4.3.2, ends in �nite time.Let ~r denote the vector of revocation probabilities. The following lemma shows how to computethe limit probabilities � given ~r. Further it shows how to compute a close approximation to �,given a su�ciently close approximation to ~r.Lemma 4.37 The limit probabilities satisfy � = �(I � A)MR, where R is a diagonal matrix withRii = 11�(1��i)Pk rkMik . Further, there exists a unique solution to the this system subject to thecondition Pi �i = 1. 29



Remarks: If �i = 0 for every i, then ri = 0 for every i, and so we recover the familiar conditionfor Markov chains that � = �M . Although we are considering the transient case here, note thatif we formally take ri = 1, which occurs in the null case, then we in fact recover the equation wefound in the null case, namely � = �(I � A)MA�1.Proof. The �rst part of the lemma is obtained as in Theorem 4.35. Let �i!j denote the limitprobability of a forward step from i to j, and let �i j denote the limit probability of a backwardstep from j to i. Then the following conditions hold.�i j = rj�i!j (8)�i!j = �i(1� �i)Mij (9)�i = Xj �j!i +Xj �i j (10)Using equation (8) to eliminate all occurrences of variables of the form �i j , and then usingequation (9) to eliminate all occurrences of �i!j , equation (10) becomes:�i = Xj �j(1� �j)Mji + �i(1� �i)Xj rjMij (11)Thus if we let D be the matrix withDij = (1� �i)Mij1� (1� �j)PkMjkrk ;then � satis�es � = �D. As in the proof of Theorem 4.35 if we permute the rows and columns ofD so that all states i with �i = 1 appear at the end, then the matrix D looks as follows:D =  D� X0 0 !where D� is nonnegative and irreducible. Thus � = [�A�B] must satisfy �A = �AD� and �B =�AX . Now �A is seen to be unique (up to scaling) by the Perron-Frobenius Theorem (Theorem A.1),while �B is unique given �A. The lemma follows by noticing thatD can be expressed as (I�A)MR.Lemma 4.38 Let the entries of M and ~� be l-bit rationals describing a transient (M; ~�; i)-backo�process and let � be its limit probability vector. For every � > 0, there exists � > 0, with log 1� =poly(n; l; log 1� ), such that given any vector ~r0 of l0-bit rationals satisfying k~r0 � ~rk1 � �, a vector�0 satisfying k�0 � �k1 � � can be found in time poly(n; l; l0; log 1� ).Remark: By truncating ~r0 to log 1� bits, we can ensure that l0 also grows polynomially in the inputsize, and thus get a fully polynomial time algorithm to approximate �.We defer the proof of Lemma 4.38 to Appendix B.In the next lemma, we address the issue of how the revocation probabilities may be determined.We show that they form a solution to a quadratic program; in fact a semi-de�nite program. (Recallthat a real symmetric matrix A is positive semide�nite if all of its eigenvalues are non-negative. Asemi-de�nite program is an optimization problem with a linear objective function, whose constraintsare of the form \A[~x] is positive semide�nite", where A[~x] denotes a symmetric matrix whose entriesare themselves linear forms in the variables x1; : : : ; xn. Semide�nite programs are a special caseof convex programs, but more general than linear programs. They can be approximately solvede�ciently using the famed ellipsoid algorithm (see [4] for more details).)30



Lemma 4.39 The revocation probabilities ri are the optimum solution to the following system:minXi xisuch that xi � �i + (1� �i)xiPjMijxjxi � 1xi � 0 9>>>>=>>>>; (12)Further, the system of inequalities above is equivalent to the following semide�nite program:minXi xisuch that qi = 1� (1� �i)PjMijxjxi � 1xi � 0qi � 0Di positive semide�nite, where Di =  xi p�ip�i qi ! 9>>>>>>>>>>>>=>>>>>>>>>>>>; (13)Proof. We start by considering the following iterative system and proving that it converges to theoptimum of (12).For t = 0; 1; 2; : : :, de�ne x(t)i as follows:x(0)i = 0; x(t+1)i = �i + (1� �i)x(t)i Xj Mijx(t)j :By induction, we note that x(t)i � x(t+1)i � 1. The �rst inequality holds, sincex(t+1)i = �i + (1� �i)x(t)i Xj Mijx(t)j� �i + (1� �i)x(t�1)i Xj Mijx(t�1)j= x(t)iThe second inequality follows similarly. Hence, since hx(t)i it is a non-decreasing sequence in theinterval [0; 1], it must have a limit. Let x�i denote this limit.We claim that the x�i give the (unique) optimum to (12). By construction, it is clear that0 � x�i � 1 and x�i = �i + (1� �i)x�i PjMijx�j ; and hence x�i 's form a feasible solution to (12). Toprove that it is the optimum, we claim that if a1; : : : ; an are a feasible solution to (12), then wehave ai � x(t)i and thus ai � x�i . We prove this claim by induction. Assume ai � x(t)i , for every i.Then ai � �i + (1� �i)aiXj Mijaj� �i + (1� �i)x(t)i Xj Mijx(t)j= x(t+1)i :This concludes the proof that the x�i give the unique optimum to (12).31



Next we show that the revocation probability ri equals x�i . To do so, note �rst that ri satis�esthe condition ri = �i + (1� �i)Xj Mijrjri:(Either the move to i is revoked at the �rst step with probability �i, or there is a move to j withprobability (1� �i)Mij and then the move to j is eventually revoked with probability rj , and thisplaces i again at the top of the stack, and with probability ri this move is revoked eventually.)Thus the ri's form a feasible solution, and so ri � x�i . To prove that ri � x�i , let us de�ne r(t)ito be the probability that a forward step onto vertex i is revoked in at most t steps. Note thatri = limt!1 r(t)i . We will show by induction that r(t)i � x(t)i and this implies ri � x�i . Notice �rstthat r(t+1)i � �i + (1� �i)Xj Mijr(t)j r(t)i :(This follows from a conditioning argument similar to the above and then noticing that in orderto revoke the move within t+ 1 steps, both the revocation of the move to j and then the eventualrevocation of the move to i must occur within t time steps.) Now an inductive argument as earliershows r(t+1)i � x(t+1)i , as desired. Thus we conclude that x�i = ri. This �nishes the proof of the�rst part of the lemma.For the second part, note that the condition thatDi be semide�nite is equivalent to the conditionthat xiqi � �i. Substituting qi = 1 � (1 � �i)PjMijxj turns this into the constraint xi � (1 ��i)xiPjMijxj � �i, and thus establishing the (syntactic) equivalence of (12) and (13).Using Lemmas 4.37 and 4.39 above, we can derive exact expressions for the revocation proba-bilities and limit probabilities of any given backo� process. The following example illustrates this.It also shows that the limit probabilities are not necessarily rational, even when the entries of Mand ~� are rational.Example: The following example shows that the limit probabilities may be irrational even whenall the entries of M and ~� are rational. Let M and ~� be as follows:M =  12 1213 23 ! ~� = h12 ; 13i:Using Lemma 4.39, we can now show that the revocation probabilities are roots of cubic equations.Speci�cally, r1 is the unique real root of the equation �16 + 30x � 13x2 + 2x3 = 0 and r2 is theunique real root of the equation �9 + 21x � 14x2 + 8x3 = 0. Both quantities are irrational andgiven approximately by r1 � 0:7477 and r2 � 0:5775. Applying Lemma 4.37 to this, we �nd thatthe limit probabilities of the (M; ~�)-process are �1 and �2, where �1 is the unique real root of theequation �1024 + 3936x� 3180x2 + 997x3 = 0;and �2 is the unique real root of the equation�729 + 567x+ 189x2 + 997x3 = 0:It may be veri�ed that the cubic equations above are irreducible over the rationals, and thus �1and �2 are irrational and given approximately by �1 � 0:3467 and �2 � 0:6532.In the next lemma we show how to e�ciently approximate the vector of revocation probabilities.The proof assumes the reader is familiar with standard terminology used in semide�nite program-ming, and in particular the notion of a separation oracle and its use in the ellipsoid algorithm (see[4] for more details). 32



Lemma 4.40 If the entries of M and ~� are given by l-bit rationals, then an �-approximation tothe vector of revocation probabilities can be found in time poly(n; l; log 1� ).Proof. We solve the convex program given by (12) approximately using the ellipsoid algorithm [4].Recall that the ellipsoid algorithm can solve a convex programming problem given (1) a separationoracle describing the convex space, (2) a point ~x inside the convex space, (3) radii � and R suchthat the ball of radius � around ~x is contained in the convex body and the ball of radius R containsthe convex body. The running time is polynomial in the dimension of the space and in log R� .The fact that (12) describes a convex program follows from the fact that it is equivalent to thesemide�nite program (13). Further, a separation oracle can also be obtained due to this equivalence.In what follows we will describe a vector ~x that is feasible, and an � � 2�poly(n;l) such that everypoint y satisfying kx� yk1 � � is feasible. Further it is trivial to see that every feasible pointsatis�es the condition that the ball of radius pn around it contains the unit cube and hence allfeasible solutions. This will thus su�ce to prove the lemma.Recall, from Lemma 4.13 of Section 4.1, that since (M; ~�) is transient, there exists � > 1 and avector ~w such that (I � A)M~w � �A~w. Let wmax = maxifwig and wmin = minijwi 6=0fwig. Noticefurther that we can choose � and ~w such that � � 1+2�poly(n;l) and wmax = 1 and wmin � 2�poly(n;l).(In case �(M; ~�) = 1, this follows by picking say � = 2 and using the remark after Claim 4.11.In case �(M; ~�) < 1 we use Claim 4.12 and set � = �(H) and ~w = A�1~v, where ~v is a righteigenvector of H . Since � > 1 is an eigenvalue of a matrix whose entries are l-bit rationals andsince ~w is a multiple of the eigenvector, the claims about the magnitude of � and wmin follow.)Before describing the vector ~x and �, we make one simpli�cation. Notice that if �i = 1 thenri = 1, and if �i = 0 then ri = 0. We �x this setting and then solve (12) for only the remainingchoices of indices i. So henceforth we assume 0 < �i < 1 and in particular the fact that �i � 2�l.Let � = ��12� . Note � > 2�poly(n;l). Let � = 2�(l+3)wmin ���1� �2. We will set zi = 1 � �wi and�rst show that zi � �i � (1� �i)ziPjMijzj is at least 2�. Considerzi � �i � (1� �i)ziXj Mijzj= 1� �wi � �i � (1� �i)(1� �wi)Xj Mij(1� �wj)= 1� �wi � �i � (1� �i)(1� �wi)(1� �Xj Mijwj)= (1� �wi)0@�Xj (1� �i)Mijwj1A� �wi�i� (1� �wi) (���iwi)� �wi�i= ��iwi (�� ��wi � 1)� ��iwi�� ��� 12� �2 �iwi� 2�:Now consider any vector ~y such that zi � 2� � yi � zi. We claim that ~y is feasible. First,yi � 1 since yi � zi = 1 � �wi � 1. We now show that yi � 0. First, zi � 0 since wi � 1 and� < 1. Since, as we showed above, zi � �i � (1� �i)ziPjMijzj � 2�, it follows that yi � zi � 2� �33



�i + (1� �i)ziPjMijzj � 0. Finally,yi � �i � (1� �i)yiXj Mijyj� zi � 2�� �i � (1� �i)yiXj Mijyj� zi � 2�� �i � (1� �i)ziXj Mijzj� 0 (Using the claim about the zi's.)Thus setting xi = zi � �, we note that every vector ~y satisfying xi � � � yi � xi + � is feasible.This concludes the proof.Proof. [of Theorem 4.4] Given M , ~� and �, let � be as given by Lemma 4.38. We �rst compute a�-approximation to the vector of revocation probabilities in time poly(n; l; log 1� ) = poly(n; l; log 1� )using Lemma 4.40. The output is a vector ~r0 of l0 = poly(n; l; log 1� )-bit rationals. ApplyingLemma 4.38 to M , ~�, ~r and �, we obtain an �-approximation to the limit probability vector � intime poly(n; l; l0; log 1� ) = poly(n; l; log 1� ).5 Allowing Backo� Probabilities on EdgesIn this paper, we have considered the backo� probability to be determined by the current state.What if we were to allow the backo� probabilities to be a function not just of the current state, butof the state from which the current state was entered by a forward step? Thus, in this situation,each edge (j 0; j) that corresponds to a forward step from j 0 to j has a probability of being revokedthat depends not just on j, but on j 0 also. We refer to this new, more general process as anedge-based backo� process, and our original backo� process as a node-based backo� process. We nowde�ne edge-based backo� processes a little more precisely.As with node-based backo� processes, for an edge-based backo� process we are given a Markovmatrix M , indexed by the set S of states. The di�erence is that for node-based backo� processes,we are given a vector ~� of backo� probabilities �i for each state i; however, for edge-based backo�processes, we are given a vector ~� of backo� probabilities �ij for each pair i; j of states.For a history �� = h�0; : : : ; �l�1; �li, de�ne next� to� top(��) to be �l�1.Given the Markov chain M and backo� vector ~�, and history �� with next � to� top(��) = j 0and top(��) = j, de�ne the successor (or next state) succ(��) to take on values from S with thefollowing distribution:succ(��) = 8><>: pop(��) with probability �j0j if `(��) � 1push(��; k) with probability (1� �j0j)Mjk if `(��) � 1push(��; k) with probability Mjk if `(��) = 0We denote by (M;~�; i) the edge-based backo� process, with start state i.We now show how to convert our results about node-based backo� processes into results foredge-based backo� processes. Assume we are given the edge-based backo� process (M;~�; i). LetS0 be the set of all ordered pairs (j; k) of states of S such that Mjk > 0. De�ne a new matrix M 0,indexed by S 0, such that M 0(j;k)(k;l) = Mkl, and M 0(j;k)(l;m) = 0 if l 6= k. It is easy to verify thatM 0 is a Markov chain, that M 0 is irreducible if M is, and that M 0 is aperiodic if M is. De�ne~� over S 0 by taking �(j;k) = �jk . We correspond to the edge-based backo� process (M;~�; i) the34



node-based backo� process (M; ~�; (m; i)), where m is an arbitrary state in S such that Mmi > 0.This correspondence allows us to carry over results about node-based backo� processes into resultsabout edge-based backo� processes. For example, we have the following result.Theorem 5.1 Every edge-based backo� process has a Cesaro limit distribution.Proof. Let (M;~�; i) be an edge-based backo� process. Let (M 0; ~�; (m; i)) be the correspondingnode-based backo� process. We have shown that every node-based backo� process has a Cesarolimit distribution. This gives a Cesaro limit distribution for the edge-based backo� process, wherethe limit probability of state j in the edge-based backo� process is the sum of the limit probabilitiesof all states (k; j) in the corresponding node-based backo� process.Similarly, the Cesaro limit distribution for the edge-based backo� process is e�ciently com-putable, just as it is for node-based backo� processes.6 ConclusionsWe have introduced backo� processes, which are generalizations of Markov chains where it ispossible, with a certain probability, to backup to the previous state that was entered by a forwardstep. Backo� processes are intended to capture a feature of browsing on the world-wide web,namely, the use of the back button, that Markov chains do not. We show that backo� processeshave certain properties that are similar to those of Markov chains, along with some interestingdi�erences. Our main focus is on limiting distributions, which we prove always exist and can becomputed e�ciently.We view this research as only a �rst step. First, we believe that backo� processes are a naturalextension of Markov chains that deserve further study. Second, we feel that further generalizationsshould be considered and investigated. We gave one simple example of such a generalization inSection 5. More powerful generalizations should be considered, including studies as to how wellvarious stochastic models actually capture browsing, along with a mathematical analysis of suchmodels.AcknowledgmentsAn earlier version of this paper contained a 
awed proof of Theorem B.1. We thank Leonid Gurvitsfor pointing out the error, for suggesting an alternate proof and for permission to include his proofin this paper.References[1] R. Barrett, P.P. Maglio, and D.C. Kellem. How to personalize the web. Proceedings of theACM Conference on Human Factors in Computing Systems (CHI '97).[2] G. Birkho�. Extensions of Jentzsch's theorem. Transactions of the American MathematicalSociety, 85(1):219{227, May 1957.[3] M. Charikar, S.R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins. On targeting Markovsegments. Proceedings of the ACM Symposium on Theory of Computing, 1999.i



[4] M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimiza-tions. Springer-Verlag, Berlin, 1987.[5] L. Gurvits. Personal communication, June 2000.[6] G.H. Hardy, J.E. Littlewood, and G. Polya. Inequalities. Cambridge University Press, Cam-bridge, England, 1964.[7] R.A. Horn and C.A. Johnson. Matrix Analysis, Cambridge University Press, 1985.[8] S. Karlin and H. Taylor A First Course in Stochastic Processes, Academic Press, 1975.[9] J.G. Kemeny, J.L. Snell, and A.W. Knapp. Denumerable Markov Chains. The UniversitySeries in Higher Mathematics. Van Nostrand, Princeton, NJ, 1966.[10] H. Lieberman. An agent that assists web browsing. Proceedings of IJCAI, 1995.[11] H. Minc. Nonnegative Matrices. John Wiley and Sons, New York, 1988.[12] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cam-bridge, 1994.[13] T. Selker. COACH: a teaching agent that learns. Communications of the ACM 37:7, 1994.A PreliminariesIn this section, we review background material essential to our proofs.A.1 Perron-Frobenius TheoremTheorem A.1 (Perron-Frobenius Theorem, see e.g. [7, p. 508]) Let A be an irreducible, nonneg-ative square matrix. Then� there exists ~v, with all components positive, and �0 > 0 such that A~v = �0~v;� �0 = sup~x nminijxi 6=0 n (Ax)ixi oo.� if � 6= �0 is any other eigenvalue of A, then j�j < �0;� each ~w such that A~w = �0 ~w is a constant multiple of ~v; and� each nonnegative eigenvector of A is a constant multiple of ~v.A.2 Martingale Tail InequalitiesWe begin by reviewing the basic de�nitions.De�nition A.2 We now de�ne a martingale, supermartingale, and submartingale.� A sequence X0; X1; : : : of random variables is said to be a martingale if E[XijX0; : : : ; Xi�1] =Xi�1 for all i > 0.� A sequenceX0; X1; : : : of random variables is said to be a supermartingale if E[XijX0; : : : ; Xi�1] �Xi�1 for all i > 0. ii



� A sequenceX0; X1; : : : of random variables is said to be a submartingale if E[XijX0; : : : ; Xi�1] �Xi�1 for all i > 0.Theorem A.3 (Azuma's Inequality, see e.g. [12, p. 92]) Let X0; X1; : : : be a martingale such thatfor each k jXk �Xk�1j � ck;where ck may depend on k. Then for each t � 0 and each � > 0,Pr[Xt �X0j � �] � 2e� �22P1�k�t c2k :Corollary A.4 Let X0; X1; : : : be a martingale such that for all kjXk �Xk�1j � c:Then for each t � 0 and each � > 0Pr[Xt �X0j � �cpt] � 2e��2=2:Corollary A.5 Let X0; X1; : : : be a submartingale such thatE(XijX0; : : : ; Xi�1) � Xi�1 + �;(� > 0) and for all k jXk �Xk�1j � c:Then for each t � 0 and each � � 0Pr(jXt �X0j � �) � 2e�� �2c2 �t� 2�� ��:Corollary A.6 Let X0; X1; : : : be a supermartingale such thatE(XijX0; : : : ; Xi�1) � Xi�1 � �;(� > 0) and for all k jXk �Xk�1j � c:Then for all t � 0 Pr(jXt + �t �X0j � 
t) � 2e�
2t=(2c2):A.3 Renewal TheoryDe�nition A.7 A renewal process fN(t); t � 0g is a nonnegative integer-valued stochastic processthat counts the number of occurrences of an event during the time interval (0,t], where the timesbetween consecutive events are positive, independent, identically-distributed random variables.Theorem A.8 (Corollary of Renewal Theorem, see e.g. [8, p. 203]) Let N(t) be a renewal processwhere the time between the ith and (i + 1)st event is denoted by the random variable Xi. Let Yibe a cost or value associated with the ith epoch (period between ith and (i+ 1)st event), where thevalues Yi, i � 1, are also positive, independent, identically-distributed random variables. Thenlimt!1E[P1�k�N(t)+1 Yk ]t = E(Y1)E(X1) :iii



A.4 Law of Large NumbersWe shall make use various times of the following (weak form of the) law of large numbers.Proposition A.9 Let p : Z+ ! [0; 1] be a probability distribution (i.e., P1i=1 p(i) = 1) withexpectation at least � (i.e., P1i=1 ip(i) � �). Let Y1; : : : ; YN ; : : : ; be a sequence of independentrandom variables distributed according to p. Then for every � > 0 and �0 < �, there exists an indexN such that Pr[ NXi=1 Yi > �0 �N ] � 1� �:B Stability of computations in the transient caseIn this section we show that the linear system used to �nd the stationary probability vector (giventhe vector of revocation probabilities) in Section 4.3.3 is stable. Thus it can be solved even if someof the entries of the system are only known approximately. This proof relies on a general theorem(Theorem B.1), due to Gurvits [5], about the stability of the maximal eigenvector of a positivematrix. For completeness, a proof of this theorem is also included in this section.Restatement of Lemma 4.38 Let the entries of M and ~� be l-bit rationals describing a transient(M; ~�)-backo� process and let � be its limit probability vector. For every � > 0, there exists � > 0,with log 1� = poly(n; l; log 1� ), such that given any vector ~r0 of l0-bit rationals satisfying k~r0 � ~rk1 ��, a vector �0 satisfying k�0 � �k1 � � can be found in time poly(n; l; l0; log 1� ).Proof. Let ~r0 be such that k~r0 � ~rk1 � � (where � will be speci�ed later). We will assume fornotational simplicity that that r0i � ri for every i. (If this is not the case, then the vector ~r00 givenby r00i = r0i + � does satisfy this property and still satis�es k~r00 � ~rk1 � 2�. Thus the proof belowwith ~r0 replaced by ~r00 and � by 2� will work for the general case.)Let D, D� and X be as in the proof of Lemma 4.37. De�ne D0, D0� and X 0 analogously. Thus,D0 is the matrix given by D0ij = (1� �i)Mij1� (1� �j)PkMjkr0k ;and D0 can be described as D0 =  D0� X 00 0 ! ;where D0� is irreducible. Notice �rst that X 0 = X , since if �j = 1, then for each i we haveDij = D0ij = Mij(1 � �i). Recall that our goal is to approximate the maximal left eigenvector� of D, such that k�k1 = 1. Write � = 11+lB [�A�B], where �A is a left eigenvector of D� withk�Ak1 = 1, �B = �AX and lB = k�Bk1. We will show how to compute �0A; �0B such that thatk�0Ak1 = 1, k�0A � �Ak1 � �=(n + 1) and k�0B � �Bk1 � �=(n + 1). It follows then that if we set�0 = 11+k�0Bk1 [�0A�0B], then
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1; 

�0B � �B

1g+ jlB � 

�0B
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Further, if �0A is any vector such that k�0A � �Ak1 � �n(n+1) , then a �0B satisfying k�0B � �Bk1 ��=(n + 1) can be obtained by setting �0B = �0AX . (Notice that maxijfXijg � 1 and thus j(�0B)j �(�B)j j �PiXijj(�0A)i � (�A)ij � n �n(n+1) .)Thus, below we show how to �nd �0A that closely approximates �A, speci�cally satisfyingk�0A � �Ak1 � �=(n(n+ 1)). To do so, we will use the matrix D0.We now show that the entries of D0 are close to those of D, using the fact that 0 � r0k� rk � �.Note that D0ij �Dij = (1� �i)Mij1� (1� �j)PkMjkr0k � (1� �i)Mij1� (1� �j)PkMjkrk= (1� �i)Mij (1� �j)PkMjk(r0k � rk)�1� (1� �j)PkMjkr0k� (1� (1� �j)PkMjkrk)� �(1� (1� �j)PkMjkrk)2 :Thus to upper bound this di�erence, we need a lower bound on the quantity 1� (1��j)PkMjkrk.If �j 6= 0, then this quantity is at least �j � 2�l. Now consider the case where �j = 0. In such acase, for any k, either �k = rk = 1, or �k < 1 and in such a case, we claim rk � 1 � 2�2nl. Thisis true, since the (M;�)-backo� process is irreducible and hence there is a path consisting only offorward steps that goes from k to j, and this path has probability at least 2�2nl, and once we push jonto the history stack, it will never be revoked. Further, by the irreducibility of the (M; ~�)-backo�process, there must exist k0 such that Mjk0 > 0 and rk0 � 1 � 2�2nl. Now Mjk0 � 2�l. SincePkMjk = 1, we have Pk 6=k0 Mjkrk +Mjk0 � 1, that is, PkMjkrk � Mjk0rk0 +Mjk0 � 1. SoPkMjkrk � 1�Mjk0(1� rk0) � 1� 2�(2n+1)l. Hence, 1� (1� �j)PkMjkrk is lower bounded by2�(2n+1)l. Thus we conclude that jD0ij �Dij j � 2(4n+2)l�:Next consider the matrix B = �12(I +D�)�n. Notice that B has a (maximal) eigenvalue of1, with a left eigenvector �A. We claim B is positive, with each entry being at least 2�(2l+1)n.To see this, �rst note that every non-zero entry of D� is at least 2�2l. Next consider a sequencei0 = i; i1; i2; : : : ; il = j of length at most n satisfying Dik;ik+1 > 0. Such a sequence does exist sinceD� is irreducible. Further Bij is at least 2�nQkDikik+1 which is at least 2�n(2l+1). Thus B is apositive matrix and we are interested in computing a close approximation to its left eigenvector �A.Next we show that B0 = �12(I +D0�)�n is a close enough approximation to B. Note that sincemaxij jDij � D0ij j � 2(4n+2)l�, we have maxij jB0ij � Bij j � (1 + 2(4n+2)l�)n � 1), which may bebounded from above by (2n � 2(4n+2)l)� provided � � 2�(4n+2)l. (This follows from the fact that ifx � 1, then (1+x)n�1 � 2nx, which we can see by considering the binomial expansion of (1+x)n,and noting that the sum of the coe�cients is 2n.)Now let �0A be any vector satisfying k�0A � �0AB0k1 � 2n+l(4n+2)� and k�0Ak1 = 1. (Such avector does exist. In particular, �A satis�es this condition. Further, such a vector can be found bylinear programming.) Applying Theorem B.1 below to BT ; (B0)T ; �A and �0A with 
 = 2�n(2l+1),� = � = 2n+l(4n+2)� yields k�0A � �Ak1 � �2O(nl). Thus setting � = �2=2�
(nl) su�ces to get �0Ato be an �=(n(n+ 1)) close approximation to �A. This concludes the proof.The rest of this section is devoted to the proof of the following theorem. As pointed out earlier,this theorem is due to Leonid Gurvits, and its proof is included here for completeness.v



Theorem B.1 ([5]) Let B;C be n � n matrices and ~x; ~y be n-dimensional vectors satisfying thefollowing conditions:1. Bij � 
 > 0 for every i; j. Further, �(B) = 1. (Recall that �(B) is the maximal eigenvalue ofB.)2. jCij � Bij j < � for every i; j.3. k~xk1 = 1 and B~x = ~x.4. k~yk1 = 1 and kC~y � ~yk1 � �.Then k~x� ~yk1 � �+�
3 , provided �+ � � 
2 .To prove the above theorem, we need to introduce some new de�nitions. In particular, a \pro-jective norm" on vectors introduced by Hilbert, a norm on positive matrices induced by Hilbert'sprojective norm, and a theorem of Birkho� bounding the matrix norm play a crucial role in theproof of Theorem B.1. We introduce this background material next.De�nition B.2 For n-dimensional positive vectors ~x and ~y the Hilbert projective distance between~x and ~y, denoted d(~x; ~y), is de�ned to beln ��; where � = mini �xiyi� and � = maxi �xiyi� :It may be veri�ed that for every 
1; 
2 > 0, it holds that d(~x; ~y) = d(
1 �~x; 
2 �~y), and thus d(�; �)is invariant under scaling of vectors. Further, the projective norm is the three properties of metrics(on the projective space), namely (1) non-negativity, that is, d(~x; ~y) � 0 with equality holding ifand only if ~x = ~y; (2) symmetry, that is, d(~x; ~y) = d(~y; ~x); and (3) the triangle inequality, that is,d(~x; ~y) � d(~x; ~z) + d(~z; ~y). In the following lemma, we relate the `1-distance between two positiveunit vectors in the `1-norm with the projective distance between the two.Lemma B.3 Let ~x; ~y be positive vectors. Then the following hold:1. d(~x; ~y) � 3k~x�~yk1minifyig , provided k~x� ~yk1 � (minifyig)=2.2. If k~xk1 = 1 and k~yk1 = 1, then k~x� ~yk1 � d(~x; ~y).Proof. Let � = k~x� ~yk1 and 
 = minifyig. For Part (1), note that xiyi � 1 + jxi�yi jyi � 1 + �
 .(The �rst inequality holds by considering two cases: if xi � yi, then the left-hand side is at most1; if xi > yi, then the right-hand side equals xiyi . Similarly, considering the two cases xi � yi andxi > yi, we obtain xiyi � 1� jxi�yi jyi � 1� �
 . Thus d(~x; ~y) � ln 1+ �
1� �
 = ln(1 + �
 ) + ln 11� �
 . Using theinequality ln(1 + z) � z, we see that the �rst term is at most �
 . For the second term, we use thefact that 11�z � 1+ 2z, if z � 12 . Combined with the monotonicity of the natural logarithm, we getthat ln 11� �
 � ln(1 + 2 �
 ) � 2 �
 , where the �rst inequality holds provided � � 
=2. If follows thatd(~x; ~y) � 3 �
 , provided � � 
=2.For Part (2), let i0 be such that jxi0 � yi0 j = �. Assume without loss of generality thatxi0 = yi0 + �. Since Pj xj = 1, we have xi0 � 1. Therefore xi0xi0�� � 11�� (as we see by clearing thedenominators in the inequality), that is xi0yi0 � 11�� . Thus maxi nxiyi o � 11�� . Since Pj xj = Pj yj ,vi



there must exist an index i1 such that yi1 � xi1 . Thus mini nxiyi o � 1. Putting the above together,we get d(~x; ~y) � ln 11�� � �.The Hilbert projective distance between vectors induces a natural norm on positive matrices,as de�ned below.De�nition B.4 For a positive square matrix A, de�ne the projective norm of A, denoted �H(A),to be �H(A) = sup~x;~y>0�d(A~x;A~y)d(~x; ~y) � :It turns out that the projective norm of every positive matrix is strictly smaller than 1. This canbe shown using a theorem of Birkho� that we will state shortly. First we need one more de�nitionrelated to positive matrices.De�nition B.5 For a positive square matrix A, de�ne the diameter of A, denoted �(A), to be�(A) = sup~x;~y>0 fd(A~x;A~y)g :Birkho�'s theorem below relates the projective norm of a matrix to its diameter. In particularit shows that if the diameter of a matrix is bounded, then its projective norm is strictly smallerthan 1.Theorem B.6 ([2]) For every positive square matrix A,�H(A) = tanh(�(A)=4):Recall that tanh(x) = ex�e�xex+e�x , and so tanh(x) < 1 for every x. In the following lemma it isshown that the diameter of every positive matrix is bounded, and thus every positive matrix has aprojective norm less than one.Lemma B.7 For a positive square matrix A satisfying �(A) = 1 and Aij � 
 > 0, it is the casethat �H(A) � 1� 
2.Proof. Let ~z be the maximal right eigenvector of A normalized to satisfy k~zk1 = 1. (Note ~z ispositive by the Perron-Frobenius Theorem.) Let ~A = D�1AD, where D is the diagonal matrixwith ith diagonal entry being zi. We bound �H(A) in four steps showing: (1) �H(A) = �H( ~A), (2)~A is row-stochastic (i.e., its rows sum to one), (3) ~Aij � 
2, and (4) �( ~A) � 1 � mini;jf ~Aijg foreach row-stochastic matrix ~A.For Step (1), note �rst that by the de�nition of the projective distance, we have d(D1~xD2; D1~yD2) =d(~x; ~y) for each pair ~x; ~y of vectors and each pair D1; D2 of positive diagonal matrices. As a conse-quence, we �nd that for each choice of a positive matrix A and positive diagonal matrices D1 andD2, we have �H(A) = �H(D1AD2). Setting D1 = D�1 and D2 = D yields �H(A) = �H( ~A).For Step (2), we need to verify that Pj ~Aij = 1 for every i. Note that ~Aij = Aij � zjzi . Summing,we get Pj Aij zjzi = 1zi Pj Aijzj = 1, where the last equality uses the fact that A~z = ~z.For Step (3), we need to verify that Aij zjzi � 
2. Since we know Aij � 
, it su�ces to showthat zj � 
 and zi � 1. For the former note that zj =Pk Ajkzk �Pk 
zk = 
 (since Ajk � 
 andk~zk1 = 1). For the latter, we use zi �Pk zk = 1. Thus we get ~Aij � 
2.vii



Finally for Step (4), let � = mini;jf ~Aijg. Assume that ~x and ~y are vectors of `1-norm 1. Then� � ( ~A~x)i � 1 and � � ( ~A~y)i � 1. Hence, � � ( ~A~x)i( ~A~y)i � 1� . Thus for every ~x and ~y of `1-norm 1, wehave d( ~A~x; ~A~y) � �2 ln�. Hence�( ~A) = sup~x;~y>0nd( ~A~x; ~A~y)o = sup~x;~y>0; k~xk1=k~yk1=1nd( ~A~x; ~A~y)o � �2 ln�;where the second equality holds since the projective distance is invariant with respect to scalingof the arguments. From Theorem B.6 and the fact that tanh(x) � 1 � e�2x, we get �H( ~A) =tanh(�( ~A)=4) � 1� e��( ~A)=2 � 1� e� ln� = 1� �.Next we derive an easy corollary of Lemma B.7.Lemma B.8 If A is a positive matrix with maximal right eigenvector ~x, then limk!1fd(Ak~y; ~x)g =0 for every positive vector ~y.Proof. Assume without loss of generality that �(A) = 1, and A~x = ~x (since A may be scaledwithout a�ecting its projective properties). Note that d(Ak~y; Ak~x) � �H(A)d(Ak�1~y; Ak�1~x) bythe de�nition of the projective norm �H(�). Since Ak~x = ~x, we get that d(Ak~y; ~x) � �H(A)kd(~y; ~x).Since �H(A) < 1, we have d(Ak~y; ~x) tends to 0 as k !1.The next lemma shows that if A~y is close to ~y for a positive matrix A with maximal eigenvalue1, and positive vector ~y, then ~y is close to the maximal eigenvector of A, where closeness is underthe projective norm.Lemma B.9 For a positive square matrix A, with maximal right eigenvector ~x, if ~y satis�esd(A~y; ~y) � �, then d(~y; ~x) � �1��H(A) .Proof. Again, we assume that �(A) = 1, to simplify the notation. Then from Lemma B.8 wehave limk!1fd(Ak~y; ~x)g = 0. Thus, using triangle inequality on the projective distance we getd(~y; ~x) � P1k=0 d(Ak~y; Ak+1~y). But d(Ak~y; Ak+1~y) � �H(A)d(Ak�1~y; Ak~y) � �H(A)kd(~y; A~y) ��H(A)k�. Thus, we have d(~y; ~x) �P1k=0 �H(A)k� = �1��H(A) .Proof. [of Theorem B.1] By Conditions (2) and (4) of the hypothesis we getkB~y � ~yk1 � k(B � C)~yk1 + kC~y � ~yk1 � � + �: (14)Applying Part (1) of Lemma B.3, where the roles of ~x, ~y of the lemma are played here by ~y,B~y respectively, we get d(~y; B~y) � 3 �+�
 . (Note the necessary condition for the application ofLemma B.3 follows from the condition � + � � 
=2. Applying Lemma B.9, where the roles ofA, ~x, ~y of the lemma are played here by B, ~x, ~y respectively, we get d(~y; ~x) � 3 �+�
�(1��H(B)). ByLemma B.7 we have �H(B) � 1 � 
2, and thus d(~y; ~x) � �+�
3 . Applying Part (2) of Lemma B.3 tovectors ~x and ~y, we get k~x� ~yk1 � d(~x; ~y) � �+�
3 .viii


