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ABSTRACT
We introduce the Multi-Structural Database, a new data
framework to support efficient analysis of large, complex
data sets. An instance of the model consists of a set of data
objects, together with a schema that specifies segmentations
of the set of data objects according to multiple distinct crite-
ria (e.g., into a taxonomy based on a hierarchical attribute).
Within this model, we develop a rich set of analytical opera-
tions and design highly efficient algorithms for these opera-
tions. Our operations are formulated as optimization prob-
lems, and allow the user to analyze the underlying data in
terms of the allowed segmentations.

1. INTRODUCTION
Consider a large collection of media articles that could be

segmented by a number of “dimensions.”
◦ By time: articles from April 2004, or from 1978;
◦ By content type: articles from newspapers, or from

magazines, and within magazines, from business magazines,
or from entertainment magazines;
◦ By geography: articles from the U.S., or from Europe,

and within Europe, from France or from Germany;
◦ By topic: articles about a war, a hurricane, or an elec-

tion, and within these topics, by subtopic.
These different dimensions may be correlated; for instance,

knowing the content type may give information about the
topics. The first dimension in this list (time) can be viewed
as numerical and as the example shows, we may be inter-
ested in intervals of time at various granularities. The other
three dimensions in this list (content type, geography, and
topic) can be viewed as hierarchical.

Because of the rich nature of the data (in this case, doc-
uments), we would be interested in probing the data with
queries that are much richer than those in a typical database
system. For example, we might be interested in the following
types of queries.
◦ What are the ten most common topics in the collection?
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◦ From 1990 to 1995, how did articles break down across
geography and content type?
◦ Which subtopics caused the sudden increase in dis-

cussion of the war? Are these subtopics different among
European newspapers?
◦ Break the early 1990s into ten subperiods that are most

topically cohesive, and explain which topics were hot during
each period.
◦ Break documents that mention the President by topic

so that they are most closely aligned with different content
types, to capture how different types of media with different
audiences focused on particular topics.

One of the first things we notice about these queries is
that they are rather fuzzy: there is not necessarily a clear
“right answer.” Even after we supply certain parameters (as
we will do later), there may not be a unique answer. There
is another way that our queries are unlike standard database
queries. Our queries will be resolved not by, say, searching
indices, but instead by an optimization procedure.1 Most
importantly, these queries seek to provide the user with the
highlights or salient characteristics of the data set.

Our main contribution is a framework for expressing and
computing the highlights of a large and complex data set.
This includes a data model that is rich enough to represent
the kinds of structures found in real applications. Within
this model, we propose Pairwise Disjoint Collections (or
PDCs, to be defined shortly) as a basic notion that captures
the intuitive idea of a concise set of highlights of a data
set. We formulate rich queries as optimization problems
that map the underlying data into a succinct PDC within
the allowed “schema.” Finally, we provide efficient algo-
rithms that give approximately optimal solutions for three
important classes of objective functions. We illustrate the
use of our framework with experimental results.

The basic framework.
We define a multi-structural database (MSDB) to consist

of a schema (the set of dimensions, which, in our example,
are time, content type, geography, and topic), and a set of
objects (the data, which, in our example, are media arti-
cles).

1Optimization procedures arise also in relational database
systems, such as in trying to find the most efficient way to
evaluate an SQL query. However, the answer to the SQL
query is independent of the result of the optimization. In
contrast, for our queries, the answer to the query is actually
the result of the optimization procedure.



The intent of the schema is to specify how the set of data
objects may be segmented based on each dimension. Notice
that each type of dimension admits partitions in a natural
way, e.g., a numerical dimension may be partitioned into
intervals, and a hierarchical dimension into collections of
taxonomy nodes. Our first technical contribution is a uni-
fied approach to handling these diverse types. Namely, we
formalize each dimension as a lattice — e.g., the geography
dimension is a lattice whose elements include Europe and
France, and the time dimension is a lattice whose elements
are intervals at various granularities.

As usual, a lattice is endowed with meet and join (see
Section 3 for definitions). For example, in the geography
dimension, the join of the European countries is Europe,
and in the time dimension, the meet of two time intervals is
their intersection. Each data element (in our example, each
document) is associated with various elements in the lattice.
When a data item is associated with a lattice element, it is
also associated with every element above it in the lattice;
for example, a document about France is also a document
about Europe. Lattice elements whose meet is bottom, the
minimal element of a lattice, are thought of as disjoint con-
cepts. For example, in the topics dimension, Sports and
Politics are thought of as disjoint concepts. However, it is
important to note that there may be a document associated
with both of these concepts (such as a document about a
bodybuilder who is also a governor).

We shall also consider new lattices that are the result of
taking the product of a subset of our lattices. For example,
“French newspaper” is an element of the lattice that is the
product of the geography lattice and the content type lattice.

Besides unifying various types of allowed segmentations of
data, our lattice-based approach offers the additional benefit
of being able to concisely describe subcollections of the data.
Elements of a lattice are restrictions like “French newspa-
per,” and hence can be easily understood by a user in the
terms used to define the schema. Indeed, the fundamental
collection of data objects in our framework is the set of data
objects associated with a lattice element.

The next key notion in our framework is that of a pair-
wise disjoint collection (PDC). This is a set of elements of a
lattice whose pairwise meet is bottom. A PDC thus repre-
sents a collection of conceptually disjoint concepts, and will
be our model of what a data analysis operation returns to
the user.

Analytical operations and algorithms.
Analogous to the way we developed an enhanced data

model to support data analysis, we also enhance the no-
tion of what constitutes a “query.” As mentioned earlier,
our analytical operations will be formulated as optimization
problems that map the set of data objects into a PDC within
the schema. In the present paper, we develop the formalism
and algorithms for three main query families, each of which
supports a fairly general data analysis operation. We be-
lieve that our model is fairly powerful, and anticipate many
more rich queries to be developed within our framework.

The Divide operation seeks to determine how a set of
objects is distributed across a particular set of dimensions.
The goal of the Divide operation is to return a small PDC
in which the documents are divided as evenly as possible
among the elements of the PDC with respect to the set of
dimensions; thus, Divide provides a concise summary of the
data. For example, a Divide operation with respect to geog-

raphy, where the goal is to partition into ten approximately
equal-sized pieces, might show that 11% of documents come
from North America, 9% come from Western Europe, and
so on.

The Differentiate operator allows the user to compare
two different document sets with respect to certain dimen-
sions. For example, a user could observe that there are
many more blog entries in July than the rest of the year,
and could employ Differentiate to determine how much
particular topics or geographies explain the spike. Thus, the
Differentiate operation helps us to find surprises in the
data.

The goal of the Discover operation is to break up a doc-
ument set so that an internal pattern becomes visible. The
operation segments the data using one set of dimensions such
that the resulting segments are cohesive and well-separated
according to another set of dimensions. For example, a user
might ask if there is a way to break up newspaper articles by
topic so that a strong geographic bias emerges. Thus, the
Discover operation helps us to find interesting “regions”
and structure in the data.

While our lattice-based formulation is quite general, for
the sake of obtaining efficient algorithms, we focus on two
special cases of dimensions: numerical and hierarchical. These
two special cases arise frequently in practice and hence it is
important to develop efficient algorithms for these. We first
show that in general it is NP-hard to approximate any of our
analytic operations. On the other hand, we obtain exact al-
gorithms for the single-dimensional case and approximation
algorithms for the multi-dimensional case. Most of our al-
gorithms are based on dynamic programming and can be
implemented very efficiently.

We have implemented these operations in a prototype sys-
tem, and created three databases within this system. The
first database consists of pages from the World Wide Web;
the second contains information about books and their sales
ranks at amazon.com over time; and the third contains med-
ical articles from medline. In all cases, a set of appropriate
hierarchical and numerical dimensions are defined. We give
a set of representative results showing that the operations
are both natural and useful on real-world data.

2. RELATED WORK

2.1 Online Analytical Processing
Our formulation maps directly to those that have been

used in OLAP [4]. A traditional formulation (for example,
that of Kimball [19], or see [28] for a survey) distinguishes
between measures, which are numerical and are the target
of aggregations, and dimensions, which are often hierarchi-
cal. However, this distinction is not required, and there are
formulations in which both are treated uniformly, as in our
system. See Agrawal et al. [1], and Gyssens and Laksh-
manan [14], for such examples.

Further, Harinarayan et al. [16] describe a formulation
in which each dimension is a lattice, and a joint lattice
is defined over multiple dimensions; this formulation ex-
actly matches our model, except that our goal is to perform
optimizations over the resulting multi-dimensional lattice,
rather than to characterize the set of possible queries and
hence the candidate materializations.

Gray et al. [10] describe, in the context of the cube oper-
ator, aggregation functions that may be distributive, alge-



braic, or holistic. Our algorithms rely on similar properties
of the scoring functions we employ to determine the quality
of a particular candidate solution to our optimization prob-
lems. We consider both distributive and algebraic scoring
functions.

Cody et al [5] consider the “BIKM” problem of unifying
business intelligence and knowledge management, by cre-
ating data cubes that have been augmented by additional
information extracted through text analysis. They use an
OLAP model similar to ours in that the granularity of the
fact table is a single document.

Much work on OLAP considers materialization of partic-
ular views in order to improve query performance. These
questions are relevant in our setting, but we do not consider
them in this work.

Cabibbo and Torlone [3] propose that OLAP systems should
support multiple query frameworks, possibly at different
levels of granularity. There have been a number of such
approaches suggesting frameworks that move beyond tradi-
tional hypothesis-driven query models into discovery-driven
models. Han [15] and others have considered data mining
to extract association rules on cubes. Sarawagi et al. [24,
25, 26] identify areas of the data space that are likely to
be surprising to the user. Their mechanisms allow the user
to navigate the product lattice augmented with indicators
suggesting which cells at a particular location are surpris-
ing, and which paths will lead to surprising cells. Their
visualization applies to our techniques, and their notion of
“surprisingness” may be viewed as an operator to which our
techniques apply. Like us, they produce exceptions at all
levels of the cube, rather than simply at the leaves.

Lakshmanan et al. [20] consider partitions of the cube in
order to summarize the “semantics” of the cube; all elements
of a partition belong to the same element of a particular type
of equivalence relation. This partitioning is similar in spirit
to our notion of a complete PDC.

A few properties of our model that (are not necessarily dis-
tinguishing, but nevertheless) should be kept in mind when
comparing to traditional OLAP systems include the follow-
ing. Typically, an OLAP fact table contains a single entry
for each cell of the cube; this is typically not the case in
our setting, or in that of [5]. Also, our objects may belong
to multiple locations within a dimension, which is typically
not the case in OLAP (with certain lattices corresponding
to time as notable exceptions). Our dimensions are typically
not required to be leveled or fixed-depth. And we often con-
sider single dimensions in which the size of the lattice is
quadratic in the number of distinct leaves (all intervals of a
line, for example).

Additionally, there is a fundamental distinction between
our work and OLAP, which relates to the nature of queries
rather than to the data model. OLAP queries typically spec-
ify certain nodes of the multi-dimensional lattice for which
results should be computed; these nodes might be all the
months of 2003 crossed with all the products in a certain
category, for example. Our goal instead is to leave the choice
of nodes to return as a constrained set of choices available
to the algorithm, and to cast the problem of selecting a set
of nodes as an optimization.

2.2 Clustering and mining
Some of our operations, especially Discover, can be viewed

as solving classification or clustering problems. While there
is a vast literature on clustering involving numerical at-
tributes, only recently has the problem of clustering involv-
ing a combination of numerical and categorical attributes
gained much attention. Systems such as ROCK [13], CAC-
TUS [8] and COOLCAT [2] provide algorithms for clustering
data described by a combination of numerical and categor-
ical attributes. In contrast to these, which assume a flat
space of categorical attributes, MSDB goes one step fur-
ther in using a lattice structure of relationships between the
different values for each dimension. The addition of this
structure allows us to restrict the clusters identified to cor-
respond to nodes that are already in the lattice, which make
the clusters easier for the user to understand.

Additionally, our goal of finding useful patterns in a data
set is similar to the goals of data mining. While much of
the attention in data mining has been on inducing associ-
ation rules, the work reported in [7, 9, 21] has considered
the problem of trend discovery and analysis. We continue
towards this goal by enriching the underlying data model
and generalizing the notion of a trend.

Finally, the algorithmic questions that arise in certain of
our optimization problems are related to various questions
that have been studied; we give pointers to this literature in
the context of the algorithms themselves.

3. FORMULATIONS
A lattice is a representation of a partial ordering on a

set of elements. It may be defined in terms of a partial
order, or in terms of the operations meet, written ∧, and
join, written ∨. We give the latter definition since we will
use this formulation more heavily. A lattice then is a set of
elements closed under the associative, commutative binary
operations meet and join, such that for all elements a and
b, we have a ∧ (a ∨ b) = a ∨ (a ∧ b) = a. The lattice induces
a natural partial order: a ≤ b if and only if a∧ b = a. For a
lattice L, we will write a ∈ L to mean that a is an element
of the set.

A lattice is bounded if it contains two elements > and ⊥,
called top and bottom, such that a ∧ ⊥ = ⊥ and a ∨ > = >
for all elements a. All finite lattices are bounded.

We will use #(A) to refer to the cardinality of set A.

3.1 MSDB
A multi-structural database (or simply MSDB) (X, D, R)

consists of a universe X = {x1, . . . , xn} of objects, a set
D = {D1, . . . , Dm} of dimensions, and a membership rela-
tion R specifying the elements of each dimension to which
a document belongs. We will treat each xi as simply an
identifier, with the understanding that this identifier may
reference arbitrary additional data or metadata. In the fol-
lowing, we will often refer to objects as documents, as this
is a key application domain. A dimension Di is a bounded
lattice, and we assume that the lattice nodes used in all lat-
tices are distinct; the vocabulary V = ∪iDi consists of all
such lattice nodes. The membership relation R ⊆ X × V
indicates that a data object “belongs to” a lattice element.
We require that R be upward closed, i.e., if 〈x, `〉 ∈ R and
` ≤ `′, then 〈x, `′〉 ∈ R. We define X|`, read X restricted to
`, as X|` = {x ∈ X | 〈x, `〉 ∈ R}.



Similarly, we can define multiple dimensions to have the
same structure as single dimensions. For nonempty D′ ⊆ D,
the multi-dimension MD(D′) is defined as follows. If D′ is
a singleton, the multi-dimension is simply the dimension of
the single element. Otherwise, if D′ = {D1, . . . , Dd}, then
MD(D′) is again a lattice whose elements are {〈`1, . . . , `d〉 |
`i ∈ Li}, where 〈`11, . . . , `1d〉∨〈`21, . . . , `2d〉 = 〈`11 ∨ `21, . . . , `

1
d ∨ `2d〉,

and likewise for ∧. The membership relation R is then ex-
tended to contain 〈x, 〈`1, . . . , `d〉〉 if and only if it contains
〈x, `i〉 for all i. This lattice is sometimes called the direct
product of the dimensional lattices [27].

Interpretation of lattice elements.
We think of each lattice element as a conceptual way of

grouping together documents. All elements of the same lat-
tice should represent conceptual groupings within the same
logical family, for example, groupings of documents based on
their topic. The meet of two conceptual groupings should
be seen as the most general concept that is a specialization
of both. For example, the meet of documents referring to
events of the 1800s and documents referring to events from
1870-1930 should be documents referring to events from
1870-1899. Likewise, the join of two conceptual groupings
should be seen as the most specific concept that is a gen-
eralization of both. The join of the two concepts described
above should be all documents referring to events occurring
between 1800 and 1930. Two concepts whose meet is ⊥
should be seen as conceptually non-overlapping. It is pos-
sible that objects in the database could be part of both
groups. For example, a dimension capturing a particular
way of breaking documents into topics might contain a sub-
tree about Sports, with a subnode about Basketball; and
might also contain elsewhere a node about Politics. Just
because a document appears that happens to discuss both
Sports and Politics (because it is about sports legislation),
this does not mean that the two topics must be conflated
in the formalism. The membership relation allows a docu-
ment to belong to two lattice elements whose meet is ⊥. A
strength of our formalism is that dimensions represent ab-
stract conceptual groupings, but individual objects need not
adhere exactly to these groupings. Of course, as individual
documents belong to more and more conceptually disjoint
regions of a dimension, the discriminative power of that di-
mension will diminish.

3.2 Pairwise disjoint collections
We now introduce our key notion, which will be used

in the definition of all three analytical operations. Intu-
itively, a pairwise disjoint collection, abbreviated PDC, is a
way of breaking a set of documents into conceptually non-
overlapping pieces such that each piece can be easily de-
scribed using the elements of a particular multi-dimension.
Formally, for any multi-dimension MD(D′) and any set S =
{`1, . . . , `d} of elements of the multi-dimension, we say that
S is a PDC if `i ∧ `j = ⊥ for all i, j with i 6= j.

So a PDC, in contrast to a general set of clusters, can
be communicated easily and concisely to the user in terms
that already exist in the schema; namely, the particular el-
ements of MD(D′) that define each PDC member. Each
of our analytical operations takes a multi-dimension, and
other information, and returns a PDC over the given multi-
dimension, using the other information to determine which
PDC should be returned.

In general, we think of a PDC as a segmentation of the

conceptual space of the database. For example, a PDC
might contain both the Sports and Politics nodes of a di-
mension capturing topic, as these nodes meet at ⊥ — they
do not share any subconcepts. Of course, as discussed above,
there may be a document that exists in both nodes at once
because it discusses Sports Legislation.

As another example, consider two numerical dimensions,
and the associated multi-dimension. A PDC in this multi-
dimension corresponds to a tiling of the plane using axis-
parallel rectangles.

We say a PDC is complete for a subset X ′ ⊆ X of the
objects if for every x ∈ X ′, there is some ` in the PDC such
that 〈x, `〉 ∈ R; that is, every document belongs to some
element of the PDC. We say that a PDC is complete to
mean that it is complete for X.

The reader might ask why the dimensions of an MSDB are
not simply formulated as a set system of documents with in-
tersection and union, rather than a lattice; in this case, a
PDC would be a collection of mutually non-overlapping sets
of documents. This notion of PDC is problematic because
as we discussed, documents in practice may belong to mul-
tiple conceptually distinct categories. We circumvent this
problem by defining PDCs at the schema level, rather than
the instance level.

Restricted classes of PDCs.
In many situations, conveying to the user an arbitrary

PDC over a complex multi-dimension may be quite difficult,
and we may choose to restrict the allowable PDCs. Like-
wise, in some situations, optimal instances of a restricted
family of PDCs may be easier to compute than for gen-
eral PDCs. We define three types of increasingly restrictive
PDCs. First, we require a definition. Consider a PDC H
over MD(D′), and assume dimension Di ∈ D′. Let H|Di =
{`i | 〈`1, . . . , `d〉 ∈ H} and for any element ` ∈ H|Di ,
let H|Di

(`) = {〈`1, . . . , `i−1, `i+1, . . . , `d〉 | 〈`1, . . . , `d〉 ∈
H, `i = `}.

General: A general PDC has no restrictions.

Sequential: Intuitively, a sequential PDC first breaks the
data via a PDC in some dimension, then recursively subdi-
vides each resulting data set using the next dimension, and
so on. In our earlier example of two numerical dimensions,
a PDC that is sequential will contain either horizontal or
vertical strips, each of which may be broken respectively by
arbitrary vertical or horizontal lines. Formally, a sequential
PDC is defined recursively as follows.

A PDC over a single dimension is sequential.
A PDC H over D′ ⊆ D is sequential for an ordering

(D′
1, . . . , D

′
d) of the dimensions D′ if H|D′

d
is a PDC and

H|
D′

d
(`) is sequential for (D′

1, . . . , D
′
d−1) for all ` ∈ H|D′

d
.

A PDC is sequential for D′ if there exists an ordering of
D′ for which it is sequential.

Factored: Intuitively, a PDC is factored if it represents the
cross-product of PDCs in each dimension. In our example
of two numerical dimensions, a factored PDC is defined by a
set of vertical and horizontal lines. Formally, a PDC H over
D′ ⊆ D is factored if H = H|D1 × · · · × H|D#(D′) . Every

factored PDC is a sequential PDC for every ordering of the
dimensions.

A graphical representation of examples of the three types
of PDCs for two numerical dimensions is shown in Figure 1.



3.3 Two important special cases
We now present two important special cases of dimensions

that arise in practice. We will later show that our analyti-
cal operations can be performed efficiently for these special
cases.

Numerical dimensions.
An important special type of dimension is a numerical

dimension, corresponding to points on the real line. Con-
sider a setting in which each element of X has a real-valued
timestamp associated with it. The lattice elements of this
dimension are the intervals of the real line, with meet and
join of two elements defined as the largest interval belonging
to both elements, and the smallest interval containing both
elements, respectively.

If required, the metric corresponding to a line is simply
the line distance |x− y|.

Hierarchical dimensions.
Another important special case is the hierarchical dimen-

sion, corresponding to a tree. As an example, consider
the taxonomy of topics described above, in which top-level
nodes correspond to high-level topics such as “Politics” or
“Sports”, while lower-level nodes correspond to more spe-
cific topics such as “The Republican Convention” (under
Politics), or “Curling” (under Sports).

The corresponding lattice has an element for each node of
the tree, plus a new node ⊥ (as the root fulfills the require-
ment for >). The meet of a set of of nodes is simply the
largest node contained in all nodes of the set, and the join
is the smallest node that contains all nodes in the set.

A PDC of a hierarchical dimension then corresponds to
an antichain of the corresponding tree.

If a metric is required for this dimension, the metric is
simply distance in the tree. This can easily be extended to
include weighted distance, in which each edge of the tree is
given a length.

For convenience, we will adopt specialized notation for
hierarchical dimensions, as follows. Let T be a tree cor-
responding to some hierarchical dimension. Observe that
there is a one-to-one correspondence between the nodes of
T and the elements of the lattice, so we will speak of tree
nodes for convenience. Let root(T ) be the root of T , and
#(T ) be the number of nodes in T . If a is an internal node
with degree ∆ in T , we use a1, . . . , a∆ to denote the ∆ chil-
dren of a. Let depth(T ) be the depth of T .

General Sequential Factored

Figure 1: Types of PDCs, as envisioned by Piet
Mondrian.

4. ANALYTICAL OPERATIONS
In this section, we describe a set of analytical operations

over an MSDB. The operations we describe have specific
definitions with concrete measures. However, MSDBs are
not formulated solely to support these three operations. We
anticipate both extensions and modifications of our analyt-
ical operations, and new operations entirely, over the same
framework.

The three analytical operations we describe are intended
to capture three common tasks in data analysis. All the
operations begin with a set X ′ ⊆ X of objects in an MSDB
(X, D, R). For the purposes of illustration, we will adopt
our running example of the MSDB of documents. Here X =
Docs, a large collection of documents, and the schema D =
Dims consists of four dimensions — topic, time, geo, and
source (media type). We think of X ′ as being either the
entire set, or a subset generated by one of the following
mechanisms:

(1) X ′ consists of all objects that belong to some element
of the multi-dimension; for example, all the documents from
1995 (interval of time), or all the European newspaper ar-
ticles from June of 2004 (interval of time combined with
European node of geo and the newspaper node of source);

(2) X ′ is the result of an MSDB analytical operation;
(3) X ′ is the result of an operation outside the MSDB,

such as a keyword search or a SQL query, possibly even
including other data.

In addition to requiring a subset X ′ ⊆ X, each operation
also requires a subset D′ ⊆ D of dimensions, and a positive
integer k. In all cases, we will use D′ to break X ′ into k con-
ceptually disjoint collections by finding a PDC of MD(D′)
that optimizes some measure. The differences between the
operations lies in the measure used to evaluate the PDC.
One of the consequences of formulating the operations as
optimization problems is that, unlike normal database op-
erations, the result of our operations are not unique. Of
course, this accords with our intuition that results of data
analysis are almost never unique, and often depend on the
algorithm that performs the analysis. Our formulation of-
fers a principled approach in which even if the results are
not unique, they are guaranteed to be optimal (or approxi-
mately optimal, in case we employ an approximation algo-
rithm) with respect to well-defined objective functions.

The following list gives a high-level intuition for the oper-
ations:

Divide: (Summarize the data) Provide a high-level un-
derstanding of the entire content of X ′, according to the
partitions allowed by D′. The goal is primarily to get a gist
of the data (X ′) from a particular perspective (that of D′).
Specifically, we seek to partition the collection X ′ of objects
into a small number of “pieces,” where each piece has a suc-
cinct description as an element of MD(D′), and the pieces
have more or less equal “volume.”

Differentiate: (Find surprises in the data) Find par-
ticular “regions,” according to the segmentations allowed by
D′, where objects in X ′ occur significantly more (or signif-
icantly less) frequently than we would expect based on a
“background set” B ⊆ X of objects. The goal is primarily
to find regions that are “surprising” in the sense that they
differ from the user-specified benchmark B that represents
the “expectation” of the user.

Discover: (Find structure in the data) Partition X ′ into



pieces according to the segmentations allowed by D′ such
that the pieces represent cohesive, well-separated clusters
when evaluated according to a metric on the lattice of an-
other set M ⊆ D of dimensions. The goal is to take the un-
differentiated set X ′ of objects and find some way to break
it up according to D′ so that structure emerges, in the sense
that each of the identified regions looks different through
the lens of the measurement dimensions M .

We now formally define these operations.

4.1 Divide

The Divide operation allows the user to see at a high level
how a set of objects is distributed across a particular set of
dimensions. In our example MSDB, a Divide operation
with respect to geo, where the goal is to partition into ten
approximately equal-sized pieces, might show that 11% of
media documents come from North America, 9% come from
Western Europe, etc. The goal of the Divide operation is
to identify a PDC from a specified set D′ of dimensions that
is complete for X ′. On the one hand, we would like the
PDC to be small, that is, to consist of a small number of
elements of MD(D′), so that it may be conveyed to the user
succinctly (e.g., on a screen); on the other hand, a PDC with
ten elements, one of which contains 99% of the documents
in X ′, is a poor choice since it does not give the user a good
view of how the objects are spread out along D′. Ideally, we
would prefer a PDC with ten sets, each of which contains
10% of the objects in X ′. The Divide operation allows the
user to specify the size of the PDC, and computes the best
PDC of that size.

Formalism
Divide(X, D; X ′, D′, k)
Input: X ′ ⊆ X; D′ ⊆ D; k ∈ Z+

Output: A PDC H of MD(D′) of size k such that H is
complete for X ′, and max

h∈H
#(X ′|h) is minimal over all such

H.

Examples
The Divide operation may be applied in our running ex-

ample of the Docs MSDB in the following ways:

(1) To partition all documents from 2004 into ten roughly
equal-sized collections, where each collection can be labeled
by a specific topic, one may perform

Divide(Docs, Dims ; X ′, {topic}, 10),
where X ′ = Docs|time=2004.

(2) To partition all documents into ten roughly equal-sized
collections, where each collection can be labeled by a specific
pair of time and geographic region, one may perform

Divide(Docs, Dims ; Docs, D′, 10),
where D′ = {time, geo}.

4.2 Differentiate

The Differentiate operation allows the user to compare
two different sets of objects with respect to certain dimen-
sions. This operation is useful when a user has two collec-
tions X ′ and B of objects — intuitively, the foreground and
background collections — that the user knows (or believes)
to be different in their distribution across some set D′ of di-
mensions, and wishes to find out which regions of MD(D′)
best explain the difference between the two collections.

In our (Docs, Dims) example, suppose a user observes that
there are significantly more blogs in July than in the rest of
the year; she might seek an explanation in terms of the other

dimensions, namely topic and geo. Similarly, she may seek
to explain the difference in the distribution of documents
about information technology across various source media
types from that of documents about management styles.

The Differentiate operation assumes some measure µ
that quantifies, for every element h ∈ MD(D′), the differ-
ence between X ′|h and B|h; intuitively, µ measures how
unlike B the set X ′ is, from the viewpoint of h. For exam-
ple, if 2% of all blogs are about art and there are 200K blog
entries in July, one would expect about 4K of these blog
entries to be about art; if, on the other hand, 13K blogs in
July are about art, then the excess of 9K is a good indicator
of how unlike the rest of the year July was for blog entries
about art. With a measure µ in hand, Differentiate seeks
to find a small PDC — again, motivated by conciseness of
the output returned to the user — such that the sum of the
µ difference between X ′ and B over all the elements of the
PDC is maximized. Thus, in our example, the user might
learn that art, travel, and baseball form the best set of three
topics that distinguish the July blogs from the rest.

Formalism
Differentiate(X, D; X ′, B, D′, µ, k)
Input: X ′ ⊆ X; B ⊆ X; D′ ⊆ D; k ∈ Z+;
µ : MD(D′)× 2X × 2X → R
Output: A PDC H of MD(D′) of size k such thatP
h∈H

µ(h; X ′, B) is maximal over all such H.

The Measure µ
We briefly discuss a suitable choice of the measure func-

tion µ that satisfies certain desirable conditions. Recall that
the goal of defining µ is that, for a given h ∈ MD(D′) and
foreground and background sets X ′ and B, the measure µ
should quantify how unlike B|h the set X ′|h is. Specifically,
if we treat B as a set of objects that define a “baseline,” for

every set Y of objects, we expect roughly a fraction #(B|h)
#(B)

of the objects in Y to be in Y |h; thus, we expect roughly the
same fraction of the objects in X ′ to be in X ′|h. When we
are interested in explaining upward surges, a natural candi-
date for µ is the excess in #(X ′|h)/#(X ′) over this quantity,
namely we define the peak measure µp by

µp(h; X ′, B) = #(X′|h)
#(X′) − #(B|h)

#(B)
.

If we are interested in explaining downward trends, we may
use the analogous “valley measure,” defined by µv(h; X ′, B) =
−µp(h; X ′, B). If we are interested in large upward surges
and downward trends primarily for their magnitude, we may
use the “absolute measure” µa(h; X ′, B) = |µp(h; X ′, B)|.

Note that the definition of µa simultaneously addresses
two important considerations — how surprising X ′|h is rel-
ative to B|h, as well as how impactful X ′|h is. It is obvi-

ous that to achieve a high value of
˛̨̨
#(X′|h)
#(X′) − #(B|h)

#(B)

˛̨̨
, the

fractions should differ substantially, that is, the collection
X ′ should look surprisingly different from B with respect
to h; furthermore, since (the absolute value of) this differ-

ence is upper-bounded by max{#(X′|h)
#(X′) , #(B|h)

#(B)
}, it is easy

to see that µa would only pick elements h for which either
#(X ′|h) represents a large fraction of #(X ′) or #(B|h) is a
large fraction of #(B). Similar comments apply to µp and
µv as well.
Examples

The Differentiate operation may be applied in our run-
ning example of the Docs MSDB in the following ways:



(1) To find the top ten geographic regions in which the
sport of rugby is covered more heavily than sports in general,
one may perform

Differentiate(Docs, Dims ; Xr, Xs, D
′, µp, 10),

where Xr = X|topic=Rugby, Xs = X|topic=Sports, and D′ =
{geo}.

(2) To find the top three topics whose discussion decreased
significantly, going from 2003 to 2004, one may perform

Differentiate(Docs, Dims ; X4, X3, D
′, µv, 3),

where X4 = X|time=2004, X3 = X|time=2003, and D′ = {topic}.
(3) To find the five best combinations of topics and media

types that occur very differently between Europe and Asia,
one may perform

Differentiate(Docs, Dims ; XE , XA, D′, µa, 5),
where XE = X|geo=Europe, XA = X|geo=Asia, and D′ =
{topic, source}.

(4) Suppose a user notices a spike in the discussion of
war from July to November of 2002. To find the top ten
combinations of media types and geographic regions that
account for this spike, she may perform

Differentiate(Docs, Dims ; Xw, Xo, D
′, µp, 10),

where Xw = X|topic=War,time=[7/2002,11/2002], Xo = X \ Xw,
and D′ = {geo, source}.

4.3 Discover

The goal of the Discover operation is to unearth collec-
tions of objects according to some set D′ of dimensions such
that, viewed with respect to a second set M of “measure-
ment” dimensions, the collections emerge as cohesive and
well-separated “clusters”. In our MSDB of documents, it is
reasonable to expect that the collections of documents that
correspond, respectively, to the topics “Sinn Fein,” “Three
Gorges Dam,” “Yukos,” and “Atlanta Falcons” exhibit a
strong geographic bias. Similarly, it is reasonable to expect
documents on topics “Ronald Reagan,” “George Bush,” and
“Bill Clinton” to reveal a strong correlation to the time di-
mension. One may ask: given a collection X ′ ⊆ X of objects
and two sets D′, M of dimensions, is it possible to algorith-
mically discover portions of X ′ with respect to D′ that ex-
hibit such strong localizations with respect to M? This is
precisely what the Discover operation accomplishes. Here
we think of M as the set of “measurement dimensions.”

As suggested by the above examples, some natural appli-
cations of this operation, in our MSDB of documents, might
ask the following: What are the topics among European
documents that emerge naturally as cohesive, well-separated
clusters in the time dimension? What are the most signif-
icant pairs in the (geo, time) dimensions, such that doc-
uments about these geographic regions that appear in the
corresponding time intervals happen to focus on largely dis-
joint topics? Note that the latter type of question offers an
exciting interface into a document collection, namely to find
news highlights in the space–time plane.

Formalism
Discover(X, D; X ′, D′, M, η, k)
Input: X ′ ⊆ X; D′ ⊆ D; M ⊆ D; k ∈ Z+;
η : 2D × 2X ×MD(D′) → R
Output: A PDC H of MD(D′) of size k such thatP
h∈H

η(M, X ′; h) is maximal over all such H.

The Measure η
The quality measure η is defined as follows. A PDC H of

MD(D′) is considered to be of high quality if it manifests

two properties:
Cohesion: Objects that belong to the same h in H tend

to be “nearby” in M ;
Separation: Objects that belong to different h’s in H tend

to be “distant” in M .
To implement the notions of “nearby” and “distant,” we
also assume that for every subset M ⊆ D of dimensions, we
have a metric dM on the set X of objects. To define the
metric dM on the set of objects, we may extend the natural
metric on the lattice corresponding to M . For example, for
a numeric dimension, we may define dM (x, y) as the width
of the smallest interval that contains both x and y; for a
hierarchical dimension, we may define the metric as the tree
distance between two nodes, one of which contains x and
the other one contains y, minimized over all such pairs of
nodes. For multiple dimensions, we may take dM to be a
(possibly weighted) sum of the distance in each individual
dimension of M .

Given such a metric, we will define, for h ∈ MD(D′), the
cohesion of h by

C(M, X ′; h) =

P
x,y∈X′|h

dM (x,y)

#(X′|h)2
.

Similarly, the separation of h is defined by

S(M, X ′; h) =

P
x∈X′|h, y∈X′\(X′|h) dM (x,y)

#(X′|h) #(X′\(X′|h))
.

Finally, we define

η(M, X ′; h) = S(M, X ′; h)− γC(M, X ′; h),

where γ > 1 sets the relative importance of these two desired
properties; in our experiments, we take γ = 2. Generally,
since γ > 1, it follows that h will have a positive value of
η only if the average separation between an object in the
cluster corresponding to h and an object not in that cluster
is strictly more than the average separation between two
objects within the cluster corresponding to h.

Examples
The Discover operation may be applied in our running

example of the Docs MSDB to accomplish the following
trend discovery tasks.

(1) To find out if particular media types tend to cover
particular sports more often than others, we may employ

Discover(Docs, Dims; Xs, {source}, {topic}, η, 5),
where Xs = X|topic=Sports. This will compute the top five
media types, each of which covers some sports more than
others.

(2) To identify the the ten most significant pairs in the
(geo, time) dimensions, where the collections of documents
in each of these space–time regions focus on different topics,
we may apply

Discover(Docs, Dims; Docs, D′, {topic}, η, 10).
where D′ = {geo, time}. This may reveal, for example, the
collections of documents corresponding to the region geo =
United States, time = [9/2001, 3/2002], with strong corre-
lation the topic “terrorism,” and the region geo = Europe,
time = [5/2004, 6/2004], with correlation to the topic “soc-
cer,” etc.

(3) To find out if documents about President George W.
Bush can be broken into pieces by topic so that each topic
is correlated with some geographic region, we may perform

Discover(Docs, Dims; Xb, {topic}, {geo}, η, 10),
where Xb = X|topic=George W. Bush.



5. ALGORITHMS AND COMPLEXITY
We now discuss algorithmic and hardness results for the

three analytical operations. Some of the proofs for this
section are deferred to the full version of this paper.

5.1 Hardness results
Using the hardness of approximating set cover [22, 6], we

show:

Theorem 1. There is a constant c > 0 such that Divide
is NP-hard to approximate to within a factor of c log n, where
n is the number of objects in the database.

This result can be strengthened for factored PDCs by using
a result of Grigni and Manne [11] to show that Divide is NP-
hard to approximate to within a factor of 2. Next, using the
hardness of approximating maximum clique [17], we show:

Theorem 2. For every constant ε > 0, Differentiate
and Discover are NP-hard to approximate to within a fac-
tor of n1−ε, where n is the number of lattice elements.

5.2 Algorithms for a single dimension
We give dynamic programming algorithms to compute

PDCs over a single numerical or hierarchical dimension. We
observe that for all three operations, a weight can be defined
for each element of the multi-dimension MD(D′) such that
the quality of a resulting PDC can be written as the max
(for Divide) or sum (for Differentiate and Discover)
over all elements of the weight of the element. We explicitly
compute these weights in our algorithms.

Theorem 3. Given a single numerical dimension with
n points, Divide, Differentiate, and Discover can be
solved exactly in polynomial time.

Proof. Let v1, . . . , vn be the distinct values of the nu-
merical dimension, in ascending order. We will define the
dynamic program over the indices 1, . . . , n. For each positive
integer k′ ≤ k and each index i, we consider all solutions that
place k′ non-overlapping intervals in the range from 1 . . . i,
with the last interval ending exactly at i. We compute the
optimal value C(k′, i) by considering all possible such last
intervals. The dynamic program for each of the operations
is described below.

For Divide, we set the weight w(a, b) of an interval [a, b]
to be w(a, b) = #(X ′|[a,b]). Then the dynamic program is
given by

C(k′, i) =
i−1

min
j=1

˘
max

˘
C(k′ − 1, j), w(j + 1, i)

¯¯
.

For Discover, we set the weight to be w(a, b) = η(M, X ′; [a, b]),
and the corresponding dynamic program is given by

C(k′, i) =
i−1
max
j=1

{C(k′ − 1, j) + w(j + 1, i)}.

For Differentiate, we similarly set w(a, b) = µ(X ′|[a,b]; F, B)
and use the same dynamic program as Discover. For Di-
vide and Differentiate, the corresponding weights can be
computed in O(max{#(X ′), n2}) time and for Discover,

the weights can be computed in Õ(max{#(X ′), n2} ·#(M))
time; in this version we omit the details of how to achieve
these running times. Once the weights are computed, the
best PDC using budget exactly k is C(k, n); the running
time of the dynamic program is therefore O(kn2).

We note that a recent algorithm of Khanna et al. [18] can
be used to to obtain an O(n log n) algorithm for Divide for
a single numerical dimension; we omit the details in this
version.

We close our discussion of numerical dimensions with the
following theorem regarding a simple approximation algo-
rithm for Divide. This theorem is based on a greedy algo-
rithm that requires only a single scan of the data.

Theorem 4. Given a single numerical dimension with n
points, Divide, can be efficiently approximated to within a
factor of 2 in time O(n).

Now we turn to algorithms for a single hierarchical dimen-
sion, and show the following theorem:

Theorem 5. Given a single hierarchical dimension im-
plied by a tree T , Divide, Differentiate, and Discover
can be solved exactly in polynomial time.

Proof. Let T be the tree implied by the hierarchical di-
mension. The dynamic programming algorithm is driven by
the following rule. Let a = root(T ) and let a1, . . . , a∆ be
the children of a. The best PDC of size at most k in T is
either a itself, in which case none of the descendants of a can
be included in the PDC, or is the union of the best PDCs
C1, . . . , C∆ of the subtrees rooted at a1, . . . , a∆ respectively
with the constraint that

P∆
i=1 |Ci| ≤ k. A naive implemen-

tation of this rule would involve partitioning k into ∆ pieces
in all possible ways and solving the dynamic program for
each of the subtrees. This is expensive as a function of the
degree ∆.

We address this problem by creating a binary tree T ′ from
T with the property that the best PDC in T ′ corresponds
to the best PDC in T . Construct T ′ top-down as follows.
Each node a of T with more than two children a1, . . . , a∆

is replaced by a binary tree of depth at most log ∆ with
leaves a1, . . . , a∆. The weights of a, a1, . . . , a∆ are copied
over from T and the weights of the internal nodes created
during this process are set to ∞ for Divide, and −∞ for
Differentiate and Discover. The construction is now
repeated on a1, . . . , a∆ to yield a weighted tree T ′. It is
easy to verify that the best PDC in T ′ is the same as the
best PDC in T . Also, the tree size at most doubles, i.e.,
#(T ′) ≤ 2 ·#(T ).

Since T ′ is binary, the dynamic programming algorithm
to compute the best PDC in T ′ is more efficient. For each
operation, let w be a function assigning a weight to each
node of T ′, as shown in the following table:

Divide w(a) = #(X ′|a)
Differentiate w(a) = µ(a; F, B)

Discover w(a) = η(M, X ′; a)

We compute the optimal solution using dynamic program-
ming, as follows. Let C(k′, a) be the score of the best choice
of k′ incomparable nodes in the subtree rooted at node a of
T ′. We can fill in the entries of C using the following update
rule:

C(k′, a) =

8<: w(a) k′ = 1
worstval k′ > 1 and a a leaf
bestsplit(k′, a) otherwise

where worstval and bestsplit are operation-dependent.
In Divide, we require a complete PDC, and the weight

of the maximum node must be minimized; thus, we set



worstval = ∞ and define bestsplit as follows:

bestsplit(k′, a) =
k′−1

min
k′′=1

˘
max{C(k′′, a1), C(k′ − k′′, a2)}

¯
.

For Differentiate and Discover, a complete PDC is
not required, and the sum of the weights of all nodes in the
PDC must be maximized. Thus, we instead set worstval =
−∞ and define bestsplit as follows:

bestsplit(k′, a) =
k′

max
k′′=0

˘
C(k′′, a1) + C(k′ − k′′, a2)

¯
.

Observe that the bounds for the min or max operator in the
two variants of bestsplit range from 1 to k′ − 1 in the case
of Divide, and from 0 to k′ for the other operators. This
implements the requirement that Divide return a complete
PDC by requiring that at least one unit of budget is sent
to each child; the general PDC required for Differentiate
and Discover allows zero units of budget to be sent to
either child.

For Divide and Differentiate, it can be shown that the
weights can be computed in O(max{#(X ′)·depth(T ), #(T )}
time and for Discover, the weights can be computed in
max{#(X ′) · depth(T ), #(M) ·#(T ) ·max{n, #(T )}} time,
where n is maximum number of distinct points in any di-
mension of M and T is the largest tree in M ; we omit
the details of these steps in this version. Once the weights
are calculated, the dynamic program is computed for each
k′ = 1, . . . , k and for each a ∈ T ′ and the final value is
C(k, root(T ′)). For a given k′, a, computing C(k′, a) takes
time k′, which is at most k. Since the dynamic program-
ming table is of size k · #(T ′), the total running time is
k2#(T ′) ≤ 2k2#(T ).

5.2.1 Augmented Divide

Recall that a key characteristic of a multi-dimension is
that each element may be easily and efficiently named in
terms familiar to the user; for example, “European mag-
azines” refers to an element of the multi-dimension over
geography and media type. Consider a high-degree node
such as “People” in a hierarchical dimension. If the bud-
get k is smaller than the number of children of People then
no complete PDC will ever contain a descendant of Peo-
ple. However, it is straightforward to convey to the user a
PDC of three elements: People/Politicians, People/Sports
Figures, and People/Other; and such a PDC maintains the
desirable property that all nodes can be efficiently named—
even though the meaning of People/Other is defined only
in the context of the remaining nodes of the PDC. Thus,
for operations like Divide that require a complete PDC, it
is desirable to allow “Other” nodes as part of the solution.
We therefore introduce the augmented Divide operation, an
extension of Divide on a single hierarchical dimension, to
allow this type of solution.

First, we must formalize the intuition behind “Other”
nodes. Consider a hierarchical dimension rooted at Peo-
ple, with children People/Politicians, People/Movie Stars,
and People/Sports Figures. Assume that Politicians in-
cludes William Clinton and George Bush, while Sports Fig-
ures and Movie Stars each contain numerous children. Con-
sider the following candidate PDC: {People/Sports Figures,
People/Other}. Intuitively, this PDC is complete since all
the politicians and movie stars are captured by the Peo-
ple/Other node. Now consider instead the following PDC:

{People/Sports Figures, People/Politicians/William Clinton,
People/Other}. We will consider this PDC to be incomplete,
since the inclusion of People/Politicians/William Clinton
means that the People/Other node no longer covers Politi-
cians, and hence People/Politicians/George Bush is not cov-
ered. People/Other refers only to subtrees of the People
node that are not mentioned at all in the PDC. Thus, an
“Other” node of a given parent will cover the entire subtree
of a child of that parent if and only if no other elements of
the same subtree are present in the PDC.

Formally, for any hierarchical dimension T , we define a
new tree aug(T ) by adding other nodes to T as follows:

aug(T ) = T ∪ {t.other | t is an internal node of T}.

Each node t.other has parent t and no children. Thus, every
internal node of T now contains an other child. In the
following, we will say that a is an ancestor of t if a can be
obtained by applying the parent function to t zero or more
times; thus, t is considered to be its own ancestor. We now
consider an extended notion of complete PDCs over aug(T ).
As we observed above, the elements of T that are covered
by a particular other node depend on the remainder of the
PDC, so the behavior of an other node is defined only in a
particular context. Fix H ⊆ aug(T ). We will first describe
the behavior of the other nodes of H, and will then give the
conditions under which H is a complete PDC for aug(T ).

For each h ∈ H, define CH(h) to be the nodes of T covered
by h, with respect to H, as follows. If h is a node of T ; that
is, if h is not an other node, then CH(h) = {t ∈ T | h
is an ancestor of t}. This is the traditional definition of
the subtree rooted at h, and requires no changes due to the
presence of other nodes. Now consider nodes h ∈ H such
that h = p.other, so h is the other node corresponding to
some node p. Then CH(h) = {t ∈ T | some child c of p is
an ancestor of t, and c is not an ancestor of any element of
H}. This definition captures the idea that a subtree rooted
at some child c of p is covered by p.other if and only if the
subtree does not intersect H.

A subset H ⊆ aug(T ) is said to be a complete augmented
PDC of T if and only if every leaf of T belongs to CH(h)
for exactly one h ∈ H.

Finally, for every node h ∈ H, we define

#H(X ′, h) = #

0@ [
t∈CH (h)

X ′|t

1A .

Formalism
Augmented Divide(X, D; X ′, T, k)
Input: X ′ ⊆ X; hierarchical dimension T ∈ D; k ∈ Z+

Output: A complete augmented PDC H of T of size k
such that max

h∈H
#H(X ′, h) is minimal over all such H.

This problem admits a highly efficient algorithm, as shown
by the following theorem:

Theorem 6. Given a single hierarchical dimension T ,
and access to an oracle that can provide #(X ′|t) in con-
stant time for every t ∈ T , the augmented Divide problem
with budget k can be solved optimally in time O(k).

5.3 Algorithms for multiple dimensions
In this section we discuss algorithms for multiple hierar-

chical and numerical dimensions.



Let d be the number of dimensions. Our first result states
that for a given ordering on the dimensions, optimal sequen-
tial PDCs can be found for all three operations in polyno-
mial time. The main idea is an iterative application of the
optimal algorithm for the one-dimensional case.

Theorem 7. Given an ordering on the dimensions, Di-
vide, Differentiate, and Discover can be solved to find
the optimal sequential PDC (under that ordering) in poly-
nomial time.

Proof. (Sketch) For numerical dimensions, let C(X ′, i, x, k)
be the score of the best PDC on documents X ′ over the
last i dimensions of the sequence, over the interval (−∞, x),
with budget k. The dynamic program is C(X ′, i, x, k) =
max y<x

1≤j<k
C(X ′, i, y, k − j) ◦ C(X ′|[y+1,x], i− 1,∞, j). Here

◦ stands for max in the case of Divide, and for + in the
case of Differentiate and Discover. For hierarchical di-
mensions, let C(X ′, i, a, k) be the score of the best PDC on
documents X ′ over the last i dimensions of the sequence,
over the subtree rooted at a, with budget k. We assume
the tree has been made binary as in the proof of Theo-
rem 5, and that a1 and a2 are the children of node a. Let
rj be the root of the j-th dimension from the last, accord-
ing to the ordering. Then, C(X ′, i, a, k) = min{C(X ′|a, i−
1, ri−1, k), min1≤j<k C(X ′, i, a1, j) ◦ C(X ′, i, a2, k − j)}.

Finally, we note that for some special cases of general and
factored PDCs, one can use approximation algorithms that
have been developed in other contexts. For instance, Paluch
[23] recently obtained a 17/8-approximation algorithm to
cover a given array of numbers by rectangular tiles to min-
imize the maximum sum of each tile; this is equivalent to
a general PDC for Divide with two numerical dimensions.
Another example is the algorithm of Khanna et al. [18],
which can be used to obtain an O(log n) approximation to
the factored PDC for Divide.

6. EXPERIMENTS
We implemented a prototype multi-structural database

system, and created a set of databases based on real-world
data. In this section, we describe some uses of this system
with the aim of providing a flavor for the kind of insight
that can be gained by using the data model and operators
described in this paper. Our examples are drawn from a
range of domains in order to demonstrate the breadth of
the formulation. The dimensions we employ are all either
hierarchical or numerical.

6.1 Data
Web pages. We retrieved a set of approximately 5,000 web
pages from IBM’s WebFountain system [12], along with var-
ious metadata for each document. This metadata includes a
list of entities, such as people and corporations, that occur
on each page. Each entity occupies one or more nodes in a
taxonomy. For example, the entity “George W. Bush” is in-
cluded in the node “/People/Politics/US/Exec/President.”
Each page is also tagged as to which node in a source taxon-
omy it belongs. For example, a page from Time Magazine
is included in the node “/Media/Magazines/General News.”
We retrieved a set of 5000 documents, each containing one
or more entities, belonging to one or more source collections,
and tagged with a date. There are two hierarchical dimen-
sions, namely Entities (e.g., Politicians or Companies), and

Subject
↓ Sales Rank → 1- 522- 1370-

521 1369 2473
Subject/Business&Investing 155 137 117
Subject/Children’s Books 149 118 79

Subject/Literature&Fiction 138 96 68
Subject/NonFiction 123 92 76

Subject/Other 882 1004 1107

Table 1: An example two-dimensional Divide.

Source (e.g., Sports Magazines or Newspapers), and a nu-
merical dimension, namely Date of Publication.
Medline articles. This dataset includes over 10,000 ar-
ticles from Medline, most published during the year 2001.
Each article is associated with a set of nodes in the MeSH
(Medical Subject Headings) taxonomy created and main-
tained by the National Library of Medicine. There are two
dimensions, namely a hierarchical dimension Topic (e.g., dis-
eases or chemicals), and a numerical dimension Publication
Date.
Amazon book sales. From Amazon’s web service, we
gathered information on several thousand books available
on Amazon.com. We collected sales ranks for each book
that entered the top 300 from July to October of 2004. We
also gathered the date of publication, and the subject cate-
gory of each book. The subject categories are organized into
a taxonomy. For example, the book “A Christmas Carol” by
Charles Dickens belongs to the category “Literature & Fic-
tion/World Literature/British/Classics.” Many books fall
under multiple categories in the taxonomy. There is one hi-
erarchical dimension, namely Subjects, and two numerical
dimensions, namely Date of Publication and Sales Rank.

6.2 Operator examples
Divide. We extracted a factored PDC using Divide on the
Amazon books database, where X ′ = X, the set of all ob-
jects, and D′ contains the numerical Sales Rank dimension
and the hierarchical Subject dimension. As Subject is hier-
archical, we perform an augmented Divide operation allow-
ing other nodes. The factored PDC is computed by finding
the optimal PDC for the Sales Rank dimension and the op-
timal augmented PDC for the Subject dimension, and then
taking the cross-product of the resulting PDCs. Table 1
shows the results.

Observe that the categories chosen by the algorithm are
all one level deep in the Subject tree. This reflects a good
design on the part of Amazon: books are spread fairly evenly
across the top-level categories of the tree. However, once
the size of the Category PDC expands sufficiently (in this
case, to 29 nodes), the system selects a non-uniform frontier
through the tree, with some nodes deeper than others.

Also observe that the boxes in the table are not entirely
uniform. There are two reasons for this. First, notice that
the Subjects/Other category contains more content than
the earlier rows. Although the one-dimensional PDC for
the Subjects dimension alone is optimal for that dimension,
the optimal solution need not contain a balanced split. In
some cases, like this one, the tree will force especially uneven
splits. Second, the factored PDC need not be optimal, and
may even contain table cells with no documents whatsoever.
However, the PDC does suffice to give a general idea of how
the data is distributed within those dimensions.



Figure 2: Example results from Differentiate.

Figure 3: Example results from Discover.

Differentiate. Figure 2 shows the results of an appli-
cation of Differentiate to the web pages database. We
noticed that the database showed a significant number of
documents in the period from January 20, 2003 through
March 22, 2003, so we set X ′ to contain these documents,
and used the remaining documents as the background set.
We then apply Differentiate with D′ as the entity hier-
archy. Figure 2 figure shows the best PDC of size 7. Each
line of the figure represents a node of the entity tree. No-
tice that, as required by a PDC, these nodes are all disjoint.
The histogram contains two bars for each tree node. The top
bar is the total number of documents in the foreground set
which are members of that node; the bottom bar is the num-
ber of additional documents at this node in the foreground
set, compared to the expectations raised by the background
set alone. We observe, for example, that there are many
references to George W. Bush in both data sets, but the
“surplus” in the time range we consider is about 15% of the
references. On the other hand, almost half the references to
Colin Powell are surplus, suggesting that we could explore
further to determine why this entity occurs so much more
frequently in the selected time range.

Discover. Figure 3 shows the results of a Discover oper-
ation in the Medline database. The partition dimension is
the MeSH category, and the measurement dimension is the

publication date. The system returns seven topics that are
temporally well-clustered. Amino Acids and Middle Aged
Persons show maximal cohesion, while Amino Acids show
maximal separation. While the MeSH taxonomy contains
over 22K nodes, the Discover operation has cast light on a
small number of areas that met the requirement of contain-
ing a large number of documents within a particular interval
of time. Such an operation would be useful, for example, to
track trends in medical research.

6.3 Putting it together: An example workflow
We now give a real example from our prototype system

showing how the operations can be combined into a work-
flow to allow the user to dynamically explore data, generate
summaries, and find and explain anomalies. We use the Web
pages data base for these experiments.

We begin by asking whether any particular entities have
caught the public eye during focused periods of time. We
apply the Discover operator, partitioning by entity, and
measuring by time. The results include a strong reference to
Mel Gibson. We graph references to Mel Gibson over time,
and determine that a strong spike appears around February,
2004. The movie “The Passion of the Christ” was released
in mid-February, so this interval corresponds strongly to its
release.

We decide to explore more broadly how movie stars show
up over time. We restrict to a subset X ′ consisting of doc-
uments that reference movie stars, and then perform a two-
dimensional Divide operation using entities and time. This
operation results in a two-dimensional table with entities
on one dimension and time ranges on the other. We ob-
serve that the system has expanded movie stars to a node
consisting of all actresses; a few particular actors, including
Mel Gibson (as expected), Jim Caviezel (the lead in “The
Passion”), and Arnold Schwarzenegger; and then an other

node capturing remaining actors. But we would like to un-
derstand why Arnold Schwarzenegger appears. We observe
from the results that there is relatively consistent coverage
of Arnold across all the date ranges returned by the algo-
rithm. We restrict to the set X ′ consisting of mentions of
the Arnold entity, and perform a Differentiate operation
over the time dimension, using the entire document set as
the background, to determine whether there are any partic-
ular time ranges during which Arnold occurs significantly
more frequently than other subjects. The results show that
Arnold appeared with surprising frequency in documents
dated from February 6 to March 4 of 2004. Upon exploring
the set of documents about Arnold during this time period,
we see that the press attention was due to the buzz lead-
ing up to and including the California primary elections on
March 2, 2004.

7. CONCLUSIONS
Our main contribution is MSDB, a framework for express-

ing and computing the highlights of a dynamic data set.
This includes a general data model that is rich enough to
represent the kinds of structures found in real-world exam-
ples. We propose PDCs as the basic notion for capturing
the highlights of any data set. We introduce three basic
analytic operations, namely, Divide, Differentiate, and
Discover to compute PDCs with various properties. We
develop very efficient exact or approximation algorithms for
these basic operations when the underlying dimensions are



numerical and hierarchical, the most commonly encountered
types in practice. We believe that our general framework is
applicable to many different data analytic techniques. There
remain several important algorithmic issues.
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