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Abstract

A Random Utility Model (RUM) is a distribution
on permutations over a universe of items. For
each subset of the universe, a RUM induces a
natural distribution of the winner in the subset:
choose a permutation according to the RUM dis-
tribution and pick the maximum item in the subset
according to the chosen permutation. RUMs are
widely used in the theory of discrete choice.

In this paper we consider the question of the
(lossy) compressibility of RUMs on a universe
of size n, i.e., the minimum number of bits re-
quired to approximate the winning probabilities
of each slate. Our main result is that RUMs can
be approximated using O(n?) bits, an exponen-
tial improvement over the standard representation;
furthermore, we show that this bound is optimal.

En route, we sharpen the classical existential re-
sult of McFadden & Train (2000) by showing that
the minimum size of a mixture of multinomial
logits required to approximate a general RUM is
O(n).

1. Introduction

Random utility models, or RUMs, are the most influential
and well-studied class of user behavior models in the field
of discrete choice (see Train, 2003, for an overview). A
model in the RUM family is a predictor for the item a user
will choose when presented with a slate of options. The
prediction has a specific form: the user arrives with a utility
in mind for each item of the universe, drawn from a joint
distribution over utility vectors. For any slate of options, the
user behaves rationally by selecting the highest-utilty option
available. Much of the work in the area covers subclasses of
RUMs in which the utility distribution has a specific form,
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but in this paper we consider the general class.

A seminal work of McFadden & Train (2000) showed that
any RUM may be approximated by a mixture of multinomial
logit (MNL) models. Models of this form, MNL mixtures,
have seen significant recent study, as in (Shazeer et al., 2017;
Yang et al., 2018). However, the construction of McFadden
& Train (2000) relied on unboundedly many mixture compo-
nents, leaving little understanding of the correct complexity.
Partial progress on this question was attained by Chierichetti
et al. (2018a), who showed that quadratically many mixture
components or quadratically many permutations suffice to
approximate any RUM. In this paper we continue to study
efficient representations for approximating any RUM.

We begin with some intuition about approximating RUMs.
Any RUM encodes exponentially many distributions over
a universe of n items, in the sense that each of the expo-
nentially many slates (subsets of the universe) induces a
distribution over the item of the slate that a random user will
prefer. These distributions are not arbitrary, as the RUM
imposes some structure relating the distributions of nearby
slates. Nonetheless, exactly representing the RUM requires
exponentially many bits. The question therefore is whether
the combination of the restrictions given by the form of
RUMs plus the ability to introduce a small and controllable
error in the approximation will allow a more concise repre-
sentation of the entire RUM.

An answer to this question will reveal how much practical in-
formation a RUM actually carries, as well as how concisely
it can be specified and communicated. As in sketching,
metric approximation, and related areas, the information
content captures some aspect of the representative power of
the model. While RUMs have seen significant investment
over many decades, leading to the 2000 Nobel prize being
awarded to Daniel McFadden “for his development of theory
and methods for analyzing discrete choice,” computational
and information-theoretic properties of the model have not
seen the same level of scrutiny until more recently. Hence,
fundamental questions such as the amount of information
required to approximate a RUM remain unresolved to now.

Our Results. This paper closes the question to within loga-
rithmic factors, as follows. For a universe of n items, any
RUM may be approximated arbitrarily closely on all slates
as either a mixture of ©(n) permutations or as a mixture
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of ©(n) MNLs, and both these bounds are tight up to log-
arithmic factors. Either type of model may be represented
using ©(n?) bits; such a representation is also tight, in the
strict sense that no representation of asymptotically fewer
bits is sufficient to approximate a generic RUM, no matter
the form of the representation.

We show additionally that the mixture of MNLs representa-
tion may be viewed as strictly more powerful than the mix-
ture of permutations in the technical sense that any mixture
of ¢t permutations may be well-approximated by a mixture
of t MNLs, but the converse is not true: even mixtures of a
single MNL may require 2(n) permutations to approximate.
Finally, we show that a mixture of ©,, (k) permutations is
sufficient to approximate any RUM model on slates of size
at most k£, a common setting, and this result also is tight to
polylogarithmic factors in n.

We perform some experiments to explore the implications
of these theoretical results. In our first set of experiments we
study a dataset in which users provide their total ordering
of different sushi variants, essentially encoding a complete
RUM. This allows us to study exactly how well the construc-
tion in our upper bound approximates a RUM in a practical
setting. We show that the quality of approximation is al-
most perfectly predicted by our theoretical results, and that
a representation based on just 1% of the data provides an
accurate approximation of the overall RUM.

In our second set of experiments we consider the setting
of Ragain & Ugander (2016), who present an interesting
non-rational choice model that is incomparable to the class
of RUMs. In this setting we are able to compare the non-
rational choice models learned by Ragain & Ugander (2016)
against RUMs we learn based on a simple linear program.
RUMs perform well, outperforming the MNL mixtures
model of Ragain & Ugander (2016), and in some cases
outperforming the non-rational choice model, as well. This
suggests that, at least in some settings, our findings on ex-
pressive power of permutation mixtures may point to new
algorithmic approaches to RUM discovery.

The paper is structured as follows. Section 2 introduces the
notation. Sections 3 and 4 give, respectively, the upper and
lower bound on the bit complexity of arbitrary representa-
tions. Section 5 gives the corresponding bounds for MNL
mixtures. Section 6 compares the RUM, and the mixture
of MNLs, representations. Section 7 extends the results to
the setting of slates of bounded size. Section 8 gives our
experimental results. The Supplementary Material contains
each proof missing from the main body of this paper, along
with an exponential lower bound on the bit complexity of
exact representations of RUMs, and comparisons of RUMs
with several other choice models.

2. Preliminaries

Distributions. Throughout the paper, we deal with discrete
probability distributions. Let supp(D) denote the support
of a discrete distribution D. We use = ~ D to denote that
2 € supp(D) is sampled according to D. For a generic x,
we use D(z) to denote the probability that D assigns to x;
in particular, if © € supp(D), then D(x) > 0, otherwise
D(z) =0.

For S C supp(D), we use D(.5) to denote the probability
thatz ~ Disin S, ie., D(S) = > ¢ D(x). When this
creates no ambiguity, for a generic set S, we use D(S) to
denote D (S N supp(D)).

The rotal variation distance between D and D’ is equal to

1 1
D-D'lw=5 Y. D@ -D'()|=5ID-D.
z€supp(D)

U supp(D’)
The total variation distance between D and D’ is also equal
to the maximum, over all the events &, of the absolute differ-
ence between the probabilities of £ in D and in D', i.e.,
|D = D'|tv = [D(S) = D'(S)].-

max
SCsupp(D) Usupp(D’)

Permutations and RUMs. Let [n] = {1,...,n}, 2[" be
the power set of [n], (") be the set of subsets of [n] of
size k. Let S,, be the set of permutations of the set [n].
For a given permutation 7 € S,, and for i € [n], we let
7(i) € [n] be the value (or position) of item ¢ in 7. E.g., if
T=(2=<3<1),thenn(2) =1,7(3) =2,7(1) =3.

In this paper we use the term slate to denote any non-empty
subset of [n]. Given 7 € S,, and a slate T' C [n], let
7(T) = arg max 7 (7),
ieT
i.e., the maximum item in 7" according to 7, aka, the winner.

A RUM on [n] is a probability distribution D over S,,." We
drop the quantifier “on [n]” when it is obvious from the
context. Given a slate T C [n], we use Dy to denote the
distribution of the random variable 7 (7") for 7 ~ D, i.e.,
the distribution of the winner in the slate 7" with a random
permutation from D. Note that supp(Dr) C T.

'RUMs are typically presented in terms of noisy item evalua-
tions made by users. Each item ¢ € [n] is assumed to have some
base value V;; each user samples a noise vector (E1, ..., Ey,)
from a joint noise distribution, and observes the utility of ¢ € [n]
to be U; = V; + E;. The user then chooses an item “rationally” as
the option with the highest utility U; between the available ones
(breaking ties, if they exist, u.a.r.). As the utilities are random, the
family of resulting models is named “Random Utility Models,”
or RUMs. In a second definition, the user first sorts all the items
decreasingly according to their observed utilities U; (breaking ties,
if they exist, u.a.r.), obtaining a permutation. Then, given a slate, a
rational user will choose its item with highest rank in the permu-
tation. These two definitions of RUMs are equivalent (see, e.g.,
Chierichetti et al., 2018a).
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MNLs and MNL Mixtures. A Multinomial Logit (aka,
MNL) is a widely used kind of RUM. In an MNL L, one
associates a positive weight w; > 0 to eachitemi € [n].> To
produce a random permutation, one samples the n elements,
one after the other without replacement, with probability
proportional to their respective MNL weights. It is not hard
to see that, with this RUM, the probability that ¢ wins in .S
is exactly Lg (i) = iji foreachi € S C [n].

.9
cs Wj

A mixture of t MNLs, also called a mixed logit, is given by a
sequence L1, ... L() of MNLs and a mixture distribution
p over [t]. To determine the winner of a slate S, we first
sample i ~ p and then use the MNL L) to sample the win-
ner of S. Since a mixture of RUMs is a RUM, it also holds
that a mixture of MNLs is a RUM (see, e.g., McFadden &
Train, 2000).

Approximating RUMs. To define an approximation notion
for RUMs, we first define a distance between RUMs D, D’:

dist(D,D") = max |Dg— Dg|,,

@#SC[n]
|Ds(S8") — Ds(S")].

= max
@+5'CSC[n]

IL.e., the distance is the maximum, over the slates .S, of the
total variation distance of the winner distributions of S with
D and D’. Equivalently, it is the maximum over S’ C S
of the absolute difference of the probabilities, with D and
D’, that the random winner in slate S is in S’. E.g., if
dist(D, D’) < ¢, S is a slate of movies, and 5" C S is its
subset of dark comedies, then the probability that the movie
chosen from S is a dark comedy changes by no more than
e from D to D’. Conversely, if dist(D, D’) > e, then there
is a slate S and one of its subsets S’ C S such that the
probability that the winner of .S is in .S’ changes by at least
e from D to D'.

Since a RUM is a probability distribution over permutations,
it can be represented by O(n!) real numbers, each giving
the probability of a permutation. Clearly, this representation
is prohibitive. If one is allowed to approximate a RUM, is a
more succinct representation possible?

3. An Efficient Representation

In this section we show that O(n? log n) bits are sufficient
to approximately represent a RUM. The algorithm we will
give to produce the representation will sample repeatedly
the distribution D on S,, underlying the RUM.

Theorem 1. Let 0 < €,0 < 1. There is a polynomial time
algorithm that, given any distribution D on S,,, produces
a multiset M of O (6’2 . (n +1n 6*1)) permutations such
that, with probability at least 1 — 6, the uniform distribution

’In a machine learning setting, this weight is often the result of
a linear or non-linear combination of features of the item, and is
produced as the exponentiation of a computed logit.

D on M guarantees that dist(D, D) < e.

Proof. The algorithm will first sample ¢ = [%

dependent permutations 7y, . .., 7 from D. After this first
step, the algorithm fixes D to be the uniform distribution
on the multiset of these samples, i.e., D chooses i € [t]
uniformly at random (u.a.r.), and returns ;.

in-

We now prove that, with high probability, dist(D, D) < .
Consider any slate S C [n], and any of its non-empty sub-
sets ' C S. Let Dg(S') = ZSQSN,INDS(S) be the prob-
ability that, using the distribution D, the winner in the
slate S belongs to S’. Then, Dg(S’) € [0,1] is a ran-
dom variable. Clearly, E [Dg(S")] = Yoscs' E [Ds(s)] =
> scs Ds(s) = Ds(S"), which is the probability that the
winner in the slate S with distribution D is in S’. Since

N _ AN » /
|Ds — Ds|,, = g;nsa,gles(S) Ds(57)],

the claim is proved if we show that, with probability at
least 1 — 4, for each @ # S" C S C [n] it holds that
|Ds(S") — Ds(8")| < e. Indeed, by a Chernoff-Hoeffding
bound (Hoeffding, 1963),

Pr(|Ds(S") — Ds(S)| > €] <2-e 2

2 nln3+in 2

<2.e7% T a2
There are at most 3" pairs of slates S C S C [n] (the
generic item either belongs to S’, or to S'\ S’, or to [n] \ 5),
thus we get

Pr[30 # 5 C S Cn:|Ds(S") — Ds(S") =
<§-37"-3"=6. O

—9. 67n1n3+ln% _ 53771

Note that the above upper bound improves the one
in (Chierichetti et al., 2018a) from O(n?) to O(n). An
immediate consequence of this improvement is that any
RUM can be approximately represented using O(n? logn)
bits.

Corollary 2. For each 0 < € < 1, and for each RUM D,
one can build a data structure using O(e=2 - n? - logn)
bits that one can use to return, for each slate S C [n], a
distribution Dg satisfying |Dg — 53|tv <e

Proof. The algorithm of Theorem 1 provides, with proba-
bility at least 1/2, a multiset of O(n/€?) permutations of
[n] such that the RUM D that chooses a permutation u.a.r.
in the multiset, satisfies the approximation requirement of
the statement. The generic permutation of [n] can be rep-
resented with O(n logn) bits; thus, D can be represented
with O(e=2 - n? logn) bits. O

4. A Lower Bound on the Representation Size

In this section we prove an 2(n?) lower bound on the num-
ber of bits required to sketch a RUM. This shows that the
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representation obtained in Section 3 is near-optimal.

The cornerstone of our lower bound is a class of 2(n”)
pairwise-distant RUMs that will be constructed randomly.
Before introducing this class, we introduce the key notion
of a sieve RUM.

Definition 3 (Sieve RUM). Given a sequence o =
(S1,...,8s) of sets such that S; C [n — s] for each i € [s],
we define D(%), the sieve RUM with signature o, as follows:

o fori € [s], let m; € S,, have (i) the items of S; in its top
|Si| positions, sorted increasingly, (ii) itemn — s + i
at position |S;| + 1, and (iii) the remaining items in the
bottom n — |S;| — 1 positions, also sorted increasingly;

* the sieve RUM D\?) will choose i w.a.r. from [s), and
will return permutation ;.

To build the class of RUMs, and prove our lower bound, we
will independently sample exponentially many sieve RUMs
from the following distribution.

Definition 4 (Random Sieve Distribution). Let s be given.
For each i € [s], let S; be a i.i.d. and w.a.r. subset of [n — s].
Let o = (S1,...,Ss). Return the siecve RUM D'?) as in
Definition 3.

As a first step in our lower bound proof, we show that given
two independent random sieve RUMs, with extremely high
probability, there exists at least one slate where the two
induced distributions are far in total variation distance. To
do so, we will prove that (i) there exists a class of O(n)
slates such that, for each slate S in that class, the probability
that two random sieve RUMs have close winner distributions
on S is 279 and (ii) the behavior of a random sieve
RUM on a generic subclass is independent of its behavior
on any disjoint subclass. Thus, the probability that two
random sieve RUMs behave similarly on each of the O(n)

slates in the class can be upper bounded by (2*@(”))6(71) =
2—®(n2) .

Our lower bound proof will then be concluded by a union
bound argument: if one samples 29("*) random sieve
RUMs, with large enough probability any two of the sam-
pled RUMs will behave dissimilarly on at least one slate.

Let H(z) = zlogy L + (1 — 2) log, 1 denote the binary
entropy of z € (0, 1).
Lemma 5. Suppose that D' and D" are sieve RUMs sam-
pled independently from the distribution in Definition 4, with
s=(1—a)-n, for0<a<1/2 Then,

l-a

Pr V@#Tg[n]ﬂD'T—D%tng

< 27(17H(177”))a(17a)n2 )

Proof. We will in fact show that the event in the statement
of the lemma holds, with small enough probability, even

if we consider all and only the slates 71, . .
T, ={k}U([n]\ [n—s]) fork € [n — s].

., Th_s, Wwhere

Given the generic slate T} and a generic signature 0 =
(S1,...,5), for any i € [s], it holds that n — s + i €
supp(D(TUk)) if and only if k & .S;. Recall that [n]\ [n—s] C
T}, and hence if 7; is sampled from the sieve RUM, one of
its |.S;| + 1 top-most items will be the winner: indeed, the
(|S;| 4+ 1)th item of 7; is n — s 4 j (which is in T}) and
thus either that item or one of those preceding it (those of
the set S; C [n — s]), will be the winner.

Thus, for n — s + ¢ to be chosen in the slate 7}, it must
hold that (i) ; is sampled and (ii) k& ¢ S;. In particular, if
k € S; we will have that D)) (n — s +1i) = 0; it k & S,
then Dg,ji)(n —s+i)=1/s.

For a given o, define the (n — s) X s matrix M, whose
(k,4)th entry is D%) (n — s + ). Recall that the random
sampling of o = (S1,...,Ss) is such that, for each k €
[n — s] and i € [s], an independent fair coin flip determines
whether k& € S;. Thus, under our sampling of o, each entry
of M, will be chosen independently and u.a.r. in {0, 1/s}.

Let o’ (resp., ¢’’) be the (random) signature corresponding
to D’ (resp., D) and let M' = My, M"" = M.
Pick any k € [n — s]. Observe that

2 |DlTk - D¥k|tv = Z |D%k(z) - D%k(l)|

€Ty
= | D, (k) = D7, (k)| + %,
where we let
- Y
i€[n]\[n—s]
DY, — D | o = Ok /2. Now, consider the event
gk — “6k S 1 _ a”'

Observe that | D7, — D7, |, < 152 implies 6, < 1 —a,
that is, it implies &;. Moreover, whether &, happens is a
function of the kth rows of M’ and M”. Since the entries
of M’ and M" are chosen i.i.d., the events &1, ..., &,_s are
mutually independent.

| D, (i) = D, (3)] -

Hence,

Note also that for each i € [n]\[n—s], | D7, (i) — D7, (i)] is
choseniid. and u.ar. in {0,1/s},ie., s dx ~ Bin(s, §).}
Thus,

Pr (€] = Pr [Bin (S;) <s- 1;O‘]

< 9 . 9H(15%)s — 9—(1-H(*3%))s
since ZZLEBJ (1) < 2tH®) for g < 1/2.

)

3The binomial distribution Bin(n,p) has support
{0,1,...,n}, and it is defined as Pr[Bin(n,p) = k] =

(Hp* (L —p)n .
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Putting these together, we have

11—«
Pr[V@;éTC[n]:|D§«—D%tV< 5 ]

11—«
< Pr [Vke [n—s]:| Dy, — D7, |, < 2}

<Pr [n/\s fk] _ [ prie] < 2- (-3,
k=1

k=1
where we used the mutual independence of the events
&1, ..., &n—s. The claim follows from s = (1 —a)n. O

We now use the strong probability guarantee of Lemma 5,
and a union bound, to produce 20(n?) pairwise distant
RUMs from the distribution of Definition 4.

Theorem 6. For each 0 < a < 1/2, there is a set D of
) D| = 2l(-1(52) 20520 2]

RUMs on [n] such that (i) |D| = 2 2 2

and (ii) for each {D’', D"} € (12)), dist(D’, D") > 152

Proof. LetD = {D("l), ... ,D("t)} be a multiset of
¢ = ol(1-H(352)) =t n? |
RUMs sampled i.i.d. from the distribution in Definition 4.

We apply Lemma 5 on each of the (;) < % pairs of sampled
RUMs, together with a union bound, to obtain:

Pr {a{m’} e @]),vz AT Clnl:

oo

104]
< -
tv 2

< 27(17H((17a)/2))a(17a)n2 ~t2/2 <1/2.

Thus, D has pairwise distinct elements (and is then a set) at
distance larger than 1’7“ from each other, with probability at
least 1/2 — i.e., with positive probability, D has properties
(i) and (ii). O]

We conclude by showing the representation lower bound:
representing a RUM to within a maximum total variation
distance bounded below 1/4 requires Q(n?) bits.

Corollary 7. Fix some 0 < o < 1/2. A data structure for
a generic RUM D that can be used, for each slate S C [n],
to return a distribution D satisfying |Dg — Dg|,, < 1770‘,

. 3 .
requires at least % - n? — 1 bits.

Proof. It is well-known that H (15%) < 1 — %, forz €
[—1,1], (see, e.g., Calabro, 2009). Theorem 6 guarantees
that, for each small enough «, there exists a set D of RUMs,
such that for each {D, D'} € (%), there exists a slate T =

Tp,pr C [n] such that | Dy — Dl ¢, > 1_70‘ and with

@ﬂpy>aﬂg“”.<1—ﬂ<1;a>>wﬂ—1

a(l—a) o?

e G A |
- 2 In4 "

2 3
a o« 9 ot
> Y 2 5% 2
T ma T 7"

since 0 < o < 1/2and 41n4 < 6.

Let D € D. Suppose we have a data structure A that, for
each slate S C [n~] can provide a distribution Dg over S,
such that [Dg — Dgliy < 152, We show that A uniquely
determines D € D. Indeed, for each D’ € D\ {D} there
exists at least one slate T' = T)p p- C [n] such that
11—« ~ ~
2 <|DT—D’/T‘tv§|DT—DT|tV+|DT_D’/T‘tv
l-a ~
<1 4 \Dr - Dy,

where the second inequality is the triangle inequality. The
above inequalities then entail that | Dy — D/, > Lo
15¢ = 152 Hence, D is the only RUM of D that, for all
slates .S, guarantees | Dg — Dglty < FTO‘. It follows that A
can be used to uniquely identify each RUM in D. Thus, by

. 302 .
counting, A uses at least lg, [D| > ¢~ — 1 bits. O

5. The Efficiency of MNL Mixtures

In this section we study the question of how well succinct
MNL mixtures can approximate a RUM. We start by observ-
ing that the distribution of winners of a permutation can be
well-approximated by those of an MNL.

Observation 8. Let D be a RUM supported on a single
permutation. Then, for each 0 < € < 1, there exists an
MNL L such that dist(L, D) < e.

Proof. Let supp(D) = {n}. We construct an MNL L by
assigning a weight of €” to the item with rank r in 7, for
each r € [n]. For any slate S C [n], leti = 7(S) be the top
element of S with the ordering of ; then, Dg (i) = 1. If r
is the rank of 7 in 7, then

€” 1 1
Ls(i)> =c—==sc—=—7—=1—¢.
Zj:r € Zj:() € 1i€
Since Dg(i) = 1, we have |[Lg — Dgliv <. O

Theorem 1 and Observation 8 immediately yield:

Corollary 9. For each RUM D, there exists a uniform mix-
ture L of O(n/€®) MNLs such that dist(L, D) < e.

In the remainder of this section we will prove an almost
matching lower bound: one cannot approximate a generic
RUM to within some constant error using a mixture of only
o(n/logn) MNLs. There are two ingredients in this proof:
the representational lower bound for RUMs (Corollary 7)
and a compression result for MNL mixtures that we show
below (Theorem 12). The latter is of independent interest.

To show MNL mixtures can be compressed we proceed as
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follows. First, we show that the weights in any MNL can be
reduced to weights whose consecutive ratios can be repre-
sented with O(log n) bits each, at the cost of a small error
in the winner distributions. Consequently, any MNL can be
approximated by a representation that uses only O(nlogn)
bits. Then, we use this result to show that a mixture of ¢
MNLs can be approximated using only O(nt logn) bits.

The argument is concluded by applying Corollary 7 which
ensures that, for a mixture of ¢ MNLs to approximate a
generic RUM, one must have ntlogn > Q(n?), and thus

t>0Q (logn)

We begin by proving our main MNL compression result.

Theorem 10. For any MNL L and for each 0 < € < 1,
there is an MNL L that can be represented with O(nlog %)
bits such that dist(L, L) <

Proof. Let [n] = {i1,...,i,} and assume w.lLo.g. that
1 = w;, < < w;, are the weights of the

items in the R/INL L. For each j = 2,...,n, define

w;

pj = [log1+ﬁ min(wi_’ ,QT”)—‘ Note that p; is a

j—1

non-negative integer of value at most O (log1 b %) =

0] (% log %) and hence can be represented using O (1og %)
bits. Thus, the full sequence of ps, ..., py, and the ordering

i1,12,. . .,in, can be represented with O(nlog 2) bits.
We define the MNL L using pa, ..., pp and iy, ..., i the
weight of item i; € [n] in Lis @;;, = (1 + £)2i=2rt. To

prove dist(L, L) < ¢, we need two key properties of these
new weights, stated next.

Lemma 11. (i) Iffor somej < j' it holds wj; /wt .
then wlj /wl . (ii) If for some j < j' it holds

2n
w; . Inh w;
%,then(lfi) i< o

Wi, T Wi, T Wi,
' ' 57

2n’

wij/wij, >

Now, consider a slate S C [n] with S = {s1,..., 55} and
ws, <o < wg . We aim to show [Ls — Lgliy < €.

If |S| =1,then Lg = Lg and |Ls _ES|tv =0. Otherwise
let j* > 1 be the smallest i 1nteger such that Wy, > 2n W g -
Now, we write |Lgs — LSltv = (ag + BS)/Q where

s = Z |Ls(s;) — Ls(s;)l; (1)
5 R
5= Z |Ls(s;) = Ls(s;)- )

We begin by upper boundlng ag. First,
j -1 j -1

ws,
Z Lis s (55) = D oy + ey
27

j=1

3 =1

Z Ls(s;) <
j=1

L w il €
2o o< Z 5 3)
o1 Wsis, o 2
and next,
*—1 *—1
Z Ls(sj) < Z Lis; 153 (55)
j=1 j=1
= w i €
< < — <=, (4
G lmcy @

where the penultimate step is from the definition of 7* and by
applying Lemma 11(i). Using (1), (3), (4), and by applying
the triangle inequality, we obtain arg < €.

We now upper bound Sg. To do this, we write

W, Wy, /W
Ls(sy) = =0 o PolTon
[S] ~ [S]
r=1Ws, l:l(wsz/wsm)
and apply Lemma 11(ii) to get upper and lower bounds
(1 _ £) L Wsy
~ 2 Wg .
Ls(s) 2~ = (1-5) - s
Z =1 wé‘; Dt Wsy
and
>~ Ws,; [ Ws 1 Wg .
Ls(s;) < 2 i e
(1_’) P T 2 t=1Wsy
Using these, we obtain
[Ls(s;) — Ls(s;)l
1 W,
§max<1(1;),1€1> |S|J
T2 Zé 1 Ws,
€/2 Wy, (s

)

= . < € -
_ 5 = S
1 6/2 Z‘e:‘l Ws, ‘Z ‘1 Ws,
where we used € € (0,1). Now,

S| R ey
g = Z |Ls(3j)—Ls(8j)| <e- J\S|J <€.
j=7* Zé 1 Ws,

Finally, |Ls — Ls|,, = (s + f5)/2 < e. O

‘We next show that a mixture of ¢ MNLs can be approximated
by a mixture that admits an O(tn log 2 ) bit representation.

Theorem 12. For any mixture L of t MNLs and for each
0 < € < 1, there is a mixture L of t MNLs Lhat can be
represented with O(tnlog 2 ) bits and dist(L, L) < e

Using these, we can now prove the lower bound on the size
of a mixture of MNLs that approximates a RUM.

Corollary 13. Fix any small enough constant o > 0. There
is @ RUM D such that for each mixture L of o(n/logn)
MNLs, it holds that dist(L, D) > 122

Proof. Let L be a generic mixture of ¢t =
MNLs.

o(n/logn)
By Theorem 12, there is a mixture L such
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that dist(L,L) < «/4 and L can be represented with
O(tnlog ) = o(n?) bits.

By contradiction, suppose that for each RUM D, one could
find a mixture L("”) of o(n,/ log n) MNLSs that approximates
D to within total variation distance 1’420‘ on each slate S.
Then, one would be able to approximate Dg to within total
variation distance 1=2¢ + 2 = 1=2 for each slate S C [n]
by storing only the representation of L(P), i.e., o(n?) bits.
But, this contradicts Corollary 7 and hence it is impossible
that the mixture L(P) exists for each RUM D. O

6. RUMs vs MNL Mixtures

In this section we compare RUMs and MNL mixtures hav-
ing supports of the same size. We will see that, for large
supports, they are near-equivalent. On the other hand, small
mixtures of MNLs are more powerful than small-support
RUMs.

Earlier, we have shown that a RUM supported on O(n)
permutations (Theorem 1), and a mixture of O(n) MNLs
(Corollary 9), are both sufficient to approximate any RUM.
We also proved that no mixture of o(n/logn) MNLs can
approximately represent a generic RUM (Corollary 13).

We begin this section by proving that there are simple RUMs
that can only be approximated by RUMs with Q(n) support.
In particular, let U be the uniform RUM, i.e., the RUM that
chooses a permutation u.a.r. from S,,. Clearly Ug(i) =
1/]S| for any slate S C [n] and for each i € S.*

Theorem 14. For any RUM U with |supp(U)| = o(n), it
holds that dist(U,U) > 1 — o(1).

Thus, in the worst case, both RUMs and MNL mixtures
require a support of size (:)(n) to approximately represent
the generic RUM. This equivalence, though, does not trans-
late uniformly to the whole space of RUMs. In particular,
U is equivalent to an MNL that assigns the same weight
of 1 to each item. Thus, U is a RUM that can be perfectly
represented with a single MNL, but that can only be ap-
proximated by RUMs having 2(n) permutations in their
support. Conversely, by Observation 8, any RUM supported
on k permutations can be approximately represented by a
mixture of £ MNLs.

7. The Case of Small Slates

In many practical settings, only the behavior of the RUM
on slates of small sizes matters. In this section we consider
this case and extend many of our results. First, we modify

*We point out that the distribution over permutations of U is the
one supporting the min-hash (or shingles) sketch (Broder, 1997).

the distance notion to focus on small slates:

disty(D,D’) = Dg — D4, .
18 k( s ) G#Sg%r?ﬁ5'|§k| S S|tv

We show that in order to approximate the winner distribu-
tions but only for slates of size at most k, the number of per-
mutations needed can be shrunk from ©(n) to O(klogn).

Theorem 15. Let 0 < €, < 1. There is a polynomial time
algorithm that, given any distribution D on S,,, produces
a multiset M of O (6’2 . (k logn + In 5’1)) permutations
such that, with probability at least 1 — 6, the uniform distri-
bution D’ on M guarantees that dist, (D, D’) < e.

The following is immediate and analogous to Corollary 2.

Corollary 16. For each 0 < ¢ < 1 and for each RUM
D, one can build a data structure using O(e~2 - nklog® n)
bits that one can use to return, for each slate S C [n] with
|S| < k, a distribution Dg satisfying |Ds — Dgl,, < e

We conclude with a near-matching Q(nk) bit lower bound.

Theorem 17. Fix some 0 < o < 1/2. A data struc-
ture for any RUM D that can be used, for each slate
S C [n] with |S| < k, to return a distribution D satisfying
|Ds — Dg|,, < 129 requires at least (1 — O(k‘2))%3nk
bits.

8. Experimental Results

The experiments were coded in Python and used IBM
cplex.” We ran them on a 8-Core i9 MacBook Pro with
64GiB of RAM; the total running time of all runs of all
experiments was under two hours.

Approximation vs Size. In the first experiment, we aim
to understand the relation between the maximum (and the
average) total variation distance of the approximating RUM
and the number of permutations in its support.

‘We consider the Sushi 3A dataset (Kamishima, 2003). The
dataset is composed of 5,000 permutations of n = 10 fixed
types of sushi, where the ith permutation represents the user
1’s preference order of the 10 types. A uniform distribution
on the dataset defines a RUM D. To compress D, for each
t € [25], we sample i.i.d. t - n permutations from D and
produce a RUM D® as in Theorem 1.

We computed two errors for each such D®: the maximum
and the average total variation distance |Dg — 5(;) |ty over
all slates S. The results, each averaged over 1,000 runs of
the sampling algorithm, are in Figure 1. The error, averaged
over all the slates, is below 0.1 already with 5n = 50 sam-
ples (i.e., 1% of the original data). The maximum error over
the slates is below 0.1 already with 23n samples (4.6% of
the original data).

Swww.ibm. com/analytics/cplex-optimizer
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Figure 1. The results for Sushi 3A. The data points represent the
costs averaged over 1,000 runs of the sampling algorithm; the error
bars represent one standard deviation. The solid lines are power
laws with exponent —1/2. The ce™*n prediction of Theorem 1
(& = cy 2n, or y = \/cn/x) fits the data quite precisely.

Choices Representation. In our second experiment, we
compare the quality of the predictions given by a RUM
representation with that of the PCMC model® of Ragain
& Ugander (2016; 2021), for the SFwork and the SFshop
datasets (Koppelman & Bhat, 2006). These datasets repre-
sent the choices between transportation alternatives made by
people that were to travel to and from their workplace (SF-
work), and a shopping center (SFshop). SFwork contains
5,029 events, each of which is composed of a slate shown
to a user, together with the user’s choice in that slate; here,
n = 6. SFshop is similar, with 3,157 events and n = 8.

To measure the quality of a prediction, we follow (Ragain
& Ugander, 2021), and use the expected total variation
distance’, which we now define. Given a multiset M =
{(S1,41),...,(St,3)}, with i; € S;, of (slate, winner)
pairs, one computes the empirical distribution p5; over the
slates as follows: s (S) equals the fraction of the pairs of
M that have S as their slate. Then, given the same M and a
slate S such that up7(S) > 0, one computes the empirical
distribution of the winner of S: Mg(4) is the ratio of the
number of pairs of M that have S as their slate and ¢ as
their winner, to the number of pairs of M that have S as
their slate. To test the quality of a model D against M, we
compute the expected total variation distance:

diStJV[(D) = ES""HZ\/I HDS - MS'tv] :

8 A PCMC model is defined by an n X n matrix Q representing
a continuous time Markov chain, with Q; ; + Q;,; > 0 for each
{i,5} € (). Given aslate S, the distribution of the winner of
S is the (unique) stationary distribution of the continuous-time
Markov chain on state space .S and transition rates g;,; = Q,; for
eachi € Sandj e S\ {i}.

"Ragain & Ugander (2021) plot the expected ¢; distance, which
is exactly twice the expected total variation distance.
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Figure 2. The expected total variation distance on the SFshop and
SFwork datasets (averaged over 100 random partitions of the
datasets) between M and the RUM model produced by our LP,
and between M and the PCMC model of Ragain & Ugander
(2021), as the percentage of the dataset used for training ranges
from 5% to 75%.

As in (Ragain & Ugander, 2021), for each dataset M, we
split the events: a u.a.r. part M of the dataset, conditioned
on having a fixed size (in the 5%—75% range), was used for
training; a u.a.r. part M* of the dataset disjoint from M**,
conditioned on having size 25%, was used for testing.

We use M*' to produce the RUM D that minimizes the
expected total variation distance dist s (D) to the training
data M, using the following linear program (LP):

ming - 3 3 (uar(S) - 9s,0)

SCln]i€S

—0s,; < MY (i) — Y px <ds; VieSesupp(pur)
TES,
w(S)=1

przl

TES,
pr >0 VreS,

The solution to this LP directly gives a RUM D: the RUM
will sample a permutation 7 with probability p.

After having computed the best RUM for M, we test it
on M**. Figure 2 plots, for each dataset, the dist e (5)
of our RUM and the dist st (P) of the PCMC model P of
Ragain & Ugander (2021), also trained on M. Each point
represents the expected total variation distance, averaged
over 100 random partitions of the dataset.

For SFshop, approximating with a RUM gives a much bet-
ter error than that obtained with PCMC (the average of the
ratios of the PCMC error and of the RUM error is ~ 2.29).
For SFwork, the RUM gives a slightly worse approxima-
tion than the PCMC one (the average of the PCMC/RUM
error ratios is &~ 0.84). Thus RUM is competitive against
PCMC, representation-wise; also, the RUMs we learned
have a smaller expected total variation error than that of the



Light RUMs

mixture of MNL models of Ragain & Ugander (2021) for
both datasets (see their Figure 2, and the Figure 2 of their
Supplementary Material; recall that the distance they plot is
twice ours).

When using the full dataset for both training and testing, the
RUM representations given by the LP have a dist 5; error of
0.026 for SFwork®, and a dist; error of 0.027 for SFShOpQ.

9. Related Work

Discrete choice theory is a well-established research topic
in economics; see the excellent book by Train (2003). We
only cover work that is directly relevant to our focus.

Farias et al. (2009) considered the problem of approximating
the choices made by users with a RUM model on bounded
support. They proposed an ¢y-minimization formulation of
the problem, and showed that it can be optimized efficiently,
under assumptions on its optimum. Our positive results can
be seen as robust versions of their conditional result.

Several papers (Chierichetti et al., 2018a;b; Negahban et al.,
2018; Oh & Shah, 2014; Soufiani et al., 2012; Tang, 2020)
have considered the problem of learning the behavior of
a general RUM or of restricted RUM models, in both the
passive and active learning settings. Our work, on the other
hand, addresses the representation complexity of RUMs.

Very recently, some deterministic choice models have been
considered in the ML literature (Rosenfeld et al., 2020).
These models, while interesting, provably cannot approx-
imate RUMs. In fact, in the Supplementary Material, we
show that deterministic models, as well as the models of (Ra-
gain & Ugander, 2016; Seshadri et al., 2019), provably can-
not represent general RUMs.

10. Conclusions

In this paper we consider the representational complexity
of approximating an arbitrary RUM on n items. We obtain
near-optimal bounds of ©(n?) bits needed to represent any
RUM. We also show a similarly tight bound of ©(n) on the
size of MNL mixtures for approximating the generic RUM.

Besides the immediate question of how to close the small
gap between our upper and lower bounds, our work opens up
other research avenues. For example, it would be interesting
to consider the ¢, version of our question, i.e., if we only

8This RUM model for SFwork is supported on ¢ = 16 permu-
tations. The model can then be represented with ¢ - (n — 1) = 80
integers (used for storing the permutations in the RUM’s support)
and ¢ — 1 = 15 floating point numbers (used for storing the proba-
bilities that the RUM assigns to those ¢ permutations).

This RUM model for SFshop is supported on ¢ = 11 permuta-
tions. The model can then be represented with ¢ - (n — 1) = 77
integers and t — 1 = 10 floating point numbers.

want to e-additively approximate the probability that the
generic item wins in the generic slate. While our upper
bound applies here, the lower bound does not. Another
question: can a succinct representation be learned with a
deep network?
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