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Abstract We provide characterizations which reveal interest-
ing insights into the nature of optimal policies, and

Consider two user populations, of which onesigjeted  then, use these insights for algorithm design. Target-

and the other is not. Users in the targeted populationing problems do not seem amenable to solutions using

follow a Markov chain on a space afstates. The un-  methods from familiar fields such as Markov decision
targeted population follows another Markov chain, also processes.

defined on the same setwofbtates. Each time a user ar-
rives at a state, he/she is presented with information ap-;
propriate for the targeted population (an advertisement,

or a recommendation) with some probability. Present- \ye study stochastic optimization problems of the fol-
ing the advertisement incurs a cost. Notice that while lowing genre. Consider two user populations, of which
the revenue grows in proportion to the flow of targeted e istargetedand the other is not. Users in the tar-
users through the state, the cost grows in proportiongeted population follow a Markov chain on a space of
to the total flow (targeted and untargeted) through the ,, states. The untargeted population follows another
state. How can we compute the best advertisement polyjarkov chain, also defined on the same set sfates.
icy? Each time a user arrives at a state, information appro-
The world-wide web is a natural setting for such a jate for the target population— say, a recommendation
problem. Internet service providers have trail informa- 4, 5n advertisement (henceforth an “ad”) — is pitched to
tion for building such Markovian user models where he yser with some probability. If the ad is pitched to a
states correspond to pages on the web. In this papetargeted user, then a revenue is obtained (and that user
we study the simple problem above, as well as the Va”'disappears from the system). The act of pitching an ad
ants with multiple targetable segments. In some set-jncyrs a cost. Therefore the cost of a policy for pitching

Introduction

tings the policy need not besiatic propability distri-  5d4s at a state depends on sum of the targetatzl@on-

bution on states. Instead, we cdynamicallyvary the  targetable traffic through that state, while the revenue

policy based on the user's path through the states.  gependonly on the targetable traffic. More generally,
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We study thestaticproblem, in which an ad is cho-
sen with some probability that depends only on the state.
We also study thelynamicpolicies, where the chosen

ad can additionally depend on the path taken by the



user to the current state. We consider each version ofdynamic version can be reduced to a point-location prob-
the problem under two metrics. In tbedgetednetric, lem in k-dimensional space, whekeis the number of

we seek to maximize revenue subject to a prescribedsegments. While there are at mést 1 regions, and:

ad budget (i.e., an upper bound on overall cost). In the of them are convex, the boundaries between the regions
unbudgetednetric, we seek to maximize the excess of may be arbitrarily complex and may have no simple
revenue over ad cost, without a fixed upper limit on the specification. Even so, at the loss of an amauritthe
cost. revenue, it is possible to approximate the regions and
the boundaries between them in polynomial size; this
allows us to devise an algorithm for this problem.

Even if the user models are more general (not neces-
sarily Markovian), the optimal dynamic strategy is de-
terministic. In contrast, the optimal static policy (which
knows only the state a user is in, not the history of the
user) is, in general, randomized. In fact, the gap in rev-
enue between randomized and deterministic static poli-
cies can be arbitrarily large. For this case we provide
approximation algorithms that guarantee a revenue within
(1 — 1/e) of the optimum.

CONTEXT.  The world-wide web is a natural setting
for such problems. Currently, targeted advertisements
on the web yield a large multiple of the revenue of un-
targeted advertisements. One of our motivations is to
develop a mathematical basis for studying such issues
The states in our Markov chains correspond naturally
to web pages; transition probabilities within a particu-
lar chain correspond to the browsing patterns of a par-
ticular segment of users. For instance, a chain mod-
eling users interested in buying a car might show that
40% (say) of such users proceed fréfmhoo! 's Auto
shopping page tautoweb.com , while 30% proceed  RELATED WORK. Project 2000 [P0OQ] at Vander-
to Carpoint.com . While we cannot hope that every bilt University maintains an extensive collection of re-
surfer action is best modeled as Markovian, we believe sources pertaining to marketing on the web. There has
this first approximation yields valuable insights. been much work on characterizing users in order to per-
In this work we do not seek to infer the Markov form more effective targeted marketing [CN].
chains; rather, we view them as having been “learned” Berman, Krass, and Xu [BKX95, BKX96, BKX97]
from the surfing trails of prior surfers as a prelude to and Hodgson [Hod90] studyow-intercepting facility
tackling the optimization problems we study. Internet location: the placement of billboards or gas-stations
service providers (ISP’s) have access to such trail in-at the nodes of a flow network (modeling traffic on a
formation, and can thus infer such models; more on road system) so as to maximize the amount of flow that
this below. With multiple targetable segments, a large passes through at least one of the facilities. There is a
number of sample trails (some of which may be tagged cost given for locating a facility at each node. They
with downstream transaction information of the form show that given a budget, a simple greedy heuristic
“this surfer went on to buy a car” or simply “this surfer gives a solution intercepting at legdt — 1/e) times
clicked on an ad pitching SAT preparation materials”) the flow in the optimal solution. Our work differs from
may be partitioned into segments (implicitly inducing theirs due to the added flexibility the web offers: (1)
a set of Markov chains). One approach to this would be Whereas their facilities are located immutably at a set
to find a solution to a generalization osagmentation  of nodes, even our static problem allows for probabili-
problem[KPR98]. However, our emphasis here is not ties with which ads are pitched. Certainly, one cannot
on inferring or segmenting these Markov models from imagine a gas station appearing probabilistically at a
trail data; we are interested in what we can do given traffic intersection; but on the web, mixed advertise-
these models. An interesting direction for further work ment policies are in fact the established norm. (2) The
would be the integration of segmented Markov chain ability of an ISP to easily monitor trails gives rise to
inference and ad policy construction. our dynamic problem; this has no analog in the world
SUMMARY OF CONTRIBUTIONS. Section 3 gives of flow interception. - :
a more complete description of our results; \?ve give . The theory of I\/_Iark_ov deC|S|or_1 processes [\Nh|9:_2]
gives one way of viewing our setting. Unfortunately, it

a quick overview here. First, unlike Markov decision p f tational ; Indeed
processes (MDP’s) [Whi92], there need not existfinitely-0 ers very Tew computational cues for us. indeed, as

specified optimal strategies for the dynamic version of we po[[ng out ”; tl|1ednbext sei'_uqtn, o:;rtd)gar:(uc %roplte_m
our problem. Nonetheless, the optimal strategy for the canhnot be modeled by any finite-state Markov decision



process. sirable to not pitch in situations where there is a large
Kumaret. al.[KRRT98] studyrecommendation sys- amount of traffic belonging to untargeted segments. On
tems in which the system uses samples from the pastthe other hand, even if all segments were targeted, it
behavior of users to give them recommendations. Inmight be reasonable to avoid pitching at a particular
their setting a user is a probability distribution on seg- state. This depends on whether the mix of users vis-
ments, and the challenge is to infer this competitively iting the state and the cost of advertising at the state
from the sample. In contrast, our users are engagedmake the net profit worthwhile.
in a single targetable activity (segment) in any surfing  We make one other assumption for definiteness: when
session; more importantly, this activity is to be compet- a user is correctly targeted, the user immediately exits
itively inferred (for pitching) from thesequencef user the system. We obtain a unit of revenue in this case,
actions (rather than a set of transactions as in [KRRT98]which should be viewed as an expectation over users
who go on to make a purchase as well as those who do
2 The model not. In other words, repeatedly targeting a prospective
car-buyer with car ads does not increase the chance of
We are givenk Markov chains on the same set of a purchase. The effect of repeated advertisements on
states. The states are represent the opportunities to adhe probability of yielding revenue has been the subject
vertise to users. The transitions represent observableéf considerable study in conventional media and direct
user behavior. We assume that stais the start state  marketing [BH96], but has not been studied carefully
for all k processes, andis the finish state (in the web for the web. On the other hand, it is the web that offers
context, this is the state corresponding to a user exit-the facility for simply (and measurably) connecting a
ing from a browser session). We also have an initial user to a service or product via a targeted advertise-
mix & = (ay, ..., ax) of users belonging to each seg- ment.
ment;Zf:1 o; = 1. Each arriving user independently A 5y ErTISEMENT POLICIES
chooses segment(and thus follows theé-th Markov
chain) with probability; .

A static advertising
policyis defined by values; , which denote the prob-
ability of pitching ad: at statev. Clearlyvv, Y, 0, , <
COST AND REVENUE  Our model has two sets of 1. In thestatic ad problen{SAP), o, , must be some
parameters: a cost functi@ast(z, v) which is the per-  fixed constant probability.
pitch cost of showing ad(that is, an ad designed for a In the dynamic ad problenfDAP), a policy is de-
user from segmen) to a user in state, and arevenue  fined by functionss; , (z) which depend on the user’s
functionrev (s, v) which is a per-user revenue obtained historyz (i.e., the user’s path from the start state to state
on correctly pitching ad to a user in segment while v) and return the probability of pitching dat states to
atv. Since both cost and revenue are specified on a pera user with history:. Again,Vv,Vz, 3, 0,4 (z) < 1.
user basis, the net cost or revenue from placing an ad afl his setting applies to ISP’s who serve every browser
stateu. depends on the flow at (i.e., the number of users click, and thus know the instantaneous surfing trajec-
who pass through) a node. tory for each client. Note that in the dynamic setting
This provides a framework for studying two phe- if we unsuccessfully pitch an ad for a segmgntve
nomena that are well-known on the web: first, that can thereafter concentrate our policy on segments other
advertising on a site with large traffic (lik@hoo ) is thanjy, for that user.
costlier; second, that advertising on a site with less (out ~ For any advertisement policy (static and dynamic),
better segmented) traffic (likmedweb) is more expen- ~ We can compute the expected cost and the expected rev-
sive on a per user basis. enue for the given Markovian user model. In the bud-
Our model allows non-targeted segments, i.e., seg-geted problem, given a bourigi on the expected cost,
ments which are not targeted by any advertiser. Thesethe objective is to obtain a policy that maximizes ex-
are amongst ouk segments and modeled simply by pected revenue. In the unbudgeted problem, the objec-
setting the associated revenue value8.tdVe wish to tive is to obtain a policy that maximizes the expected
point out the following important distinction: an untar- profit, i.e., the expected revenue minus the expected
geted segment simply adds to the flow at some (or all) cost; here there is no upper bound on the cost.
vertices, but never generates revenue. Thus, it is de- For an algorithmaLG, we definerev(ALG) to be



the total expected revenue of the policy produced by DYNAMIC ADVERTISEMENT PROBLEMS. Unlike
the algorithm. Similarly,cost(ALG) is defined to be  static policies, we show that there is always an opti-
the expected cost angtof (ALG), the expected profit, mal dynamic policies that is deterministic. A natu-

i.e., rev(ALG) — cost(ALG). ral follow-on question is whether the (deterministic)
decision about pitching an ad at a state can be made
3 Overview of results using only limited history. Unfortunately, this is not

true. Example A in Figure 1 once again gives insight

The two technical sections of the paper discuss the stati#ere. Imagine an initial mix ofa, 1 — o) between the
(Section 4) and dynamic (Section 5) versions of the targeted and non-targeted segments. oAs> 0, the
problem. In each section, we discuss both the budgetedhumber of iterations to wait before pitching goesto
and unbudgeted versions of the problem. Thus, there is no finite bound on the size of the history
required by the optimal deterministic policy. This is
also the difference between our model and finite-state
Markov decision processes.

Next, we show that for Markovian user models, com-
puting the optimal policy is equivalent to a point loca-
tion problem in ak dimensional simplex with at most

with time — waiting for a while results in a mix of k + 1 regions of which at most may be non-convex
users biased towards the targeted segment. The ﬁrsrl’hei-th region corresponds to tha posterior) mix- '

segmen_t n the_e>.<amp_le 'S targete_d; th? second_ 'S N0 e densities that would resultin segmeheing pitched
and the initial mix is uniform. A static policy that pitches

t stat ith Il orobability is able to pitch at statev. The only non-convex region corresponds to
at stateu With some smatl probability 1S able to PIteh o \iviyres where we prefer not to pitch any segment.
to most of the targetable users, but avoids the cost of

L o Unfortunately, the boundary of this region can be arbi-
pitching to non-targetable users by probabilistically Iitva . . :
R ) trarily complicated. Example B of Figure 1 shows how
ing” until most of them have leaked away (exited). As

L . ) . this region can be non-convex. There are three seg-
the initial mixture becomes increasingly slanted towards . . .
. . .__ments. For appropriate choicesafand cost, if the
targeted users, the benefits of a non-integral solution. ... . . . .
o initial mixture is(«, 0, 1 — «) then the optimum policy
become arbitrarily large. . Lo L .
. L . , pitches no ad at state Likewise for the initial mixture
We give a greedy approximation algorithm to find . S
: L s . (a,1 — «,0). Butin the convex combination of those
such a non-integral set of pitching probabilities. This * . .
, ) mixtures(«, (1 — o) /2, (1 —«)/2)), the optimum pol-
algorithm, called the &\D algorithm, generates rev-

o ) : icy pitches to segment 1.
enue within(1 — 1/e) of the optimal for any fixed bud- yp J
get If we were to assume a constant rate of leakage at

, ' ) . each state (i.e., at each state every user has a constant
If the budget is not fixed, but the goal is to maxi- ( y

. . . probability of exiting), most users exit the system fairly
mize profit (revenue minus cost), the problem appears’. . L L .
- : . . quickly (within, sayO(log n) steps with high probabil-
to be more difficult. It is related to tharize-collecting . S
. . ity). Thisis not unreasonable on the web, and allows us

set cover probleron which there seems to be no prior . S

. . to enumerate all possible histories of len@fiog n)
work: given a collection of sets ovér] and a rev-

. ) , d, by using a simple dynamic program, compute an
enue associated with each element and cost assouateadn y . 9 . pie dy : P g P
approximation optimum dynamic policy. If the leakage

with each set, choose sets so that the revenue of the . )

. .Tate, however, were relatively small (say polynomially

covered elements minus the cost of the chosen sets is . .

e : small), this approach fails.
maximized. We show that the natural greedy algorithm

. LS Nonetheless we show that for every fixedhere is
which repeatedly chooses the set that maximizes the . -

. . a polynomially-bounded approximation of each convex
ratio of the obtained new revenue to the added cost

. . L region which delivers a revenue withirfadditively) of
approximates the optimal to withih— Inr/(r — 1) . : e .
. . ) . the optimal. Further, this can be computed efficiently if
wherer is the ratio of revenue of the optimal solution . L
: ) PR - the leakage rate is at lealstpoly(n). This final result
to its cost; this result is similar in spirit to the greedy al-

) . ] is derived by constructing an appropriate linear pro-
gorithm for the variable catalog segmentation problemI |vd hy ) hu Ihg . PP pll . ! h F:
due to [KPR9S]. gram and showing that the optimum solution to the lin-

ear program approximates the regions of interest. We

STATIC ADVERTISEMENT PROBLEMS  The first ob-
servation for the static problem is that the optimal solu-
tion is not necessarily deterministic (i.e., whetg, €

{0, 1}). Example A in Figure 1 shows a two state sys-
tem where the mix of users in the system gefined



(1/2, 1, 0) (120, 1)

(99/100. 1/2)
(1/100,1/2) =7
Leak 3 (1. 1) v

Example A Example B

1,1,1) (1,1,1)

Leak Leak

Figure 1: Example Markov chains: labels on the edges ineliteg transition probabilities for the different Markov
chains; a labe{py, . . ., px) indicates a transition probabilip for the:-th Markov chain.

conclude by mentioning a dynamic-programming ap- Theorem 1 For any budgeted SAP,

proach to the budgeted DAP.
7ev(SAND) > (1 — exp (=1 + o(1))) rev(OPT).

4 Static advertisement problems Proof. After ¢ rounds of greedy iteration,A8/D will

_ _ S _ _have incurred overall costst;, and generated some
We consider static policies in which we seek to obtain revenueR’. Let R* = rev(OPT). By the greedy choice
the optimal values fos, , that maximize revenue. Sec-  f the node in thét + 1)-st iteration of SND, the cost
tion 4.1 deals with the budgeted case where we obtaings the node went up by,(< B'), thereby resulting in
a(1 — 1/e)-approximation algorithm for this problem. 4t most(1 — ¢,/B) fraction of the difference between
Section 4.2 deals with the unbudgeted version of this px andR! remaining, thereby
problem.

R-Ry,<(®-R)-(1-2). @

_ Now, the increase in cost at theh step is strictly less
For a budge®, consider frst the case of one targeted 5, B only if this step increases the probability of

population, and so the policy matiékcan be treated as  jsching at a particular vertex to. If the probability
a vector. This problem can be seen to be NP-hard byt nitching at all vertices is increasedtothen clearly,

reductiop from knapsack. \ _ we obtain the optimal profit. If this is not the case,
Let B’ = B/T, whereT' = n®. We now define the  4p cost, > B — nB' = B(1 — o(1)) (because at

sand algorithmSAND. At each of thel” rounds, 3ND mostn of the cost increases are less thaf). Thus,
increases the probability at some node such that the to-E;_l & = cost, > B(1—o(1)). Using (1) recursively,
tal cost of the policy increases by at mést This node wé_get -
is chosen greedily so as to maximize the improvement

in revenue of the new policy. More formally:

4.1 Budgeted SAP: TheSAND algorithm

A
&

*
—_"
N
=

|

| &
~—

R* _ RI
g« 0; T bl B
for T steps, findu, 6 such that increasing,, T
by § maximizesrev(c’) — rev(&), and < R*-]exp (_—Ez)
cost(a") — cost(&) < B, where i=1 B
ol =G+ 68, < R*-exp(—1+40(1)),
setd « & + béy.
yielding the theorem. O

Heree, is the unit vector that haslain the coordinate
corresponding to vertex and0s everywhere else. The running time of 8ND is T - T'(n) whereT(n) is
the time to make the greedy choice. Since the cost at



(1-a, 1-b) collectionC and all setsS € S, computey(S,C) =
(rev(CUS) —rev(C))/(cost(CUS) — cost(C)). Let

Smax be the set that maximizeg S, C). If v(Smax, C)
ab) w1 < 1, the algorithm stops and outputs Otherwise, the
algorithm sets” = C'| J{Smaz } @nd repeats.

We now analyze the resulting profit. L€t be an
optimal solution, and let* = cost(C*), r* = rev(C*),
andp* = r*/c*. We will bound the approximation ra-
tio of the greedy algorithm in terms pf.

Consider the collectio6; maintained by the greedy
algorithm at stage of its execution. Let; = rev(C})
andc¢; = cost(Cy). By adding all ofC* to Cy, we
can increase revenue by at least- r, while increas-

a node is a convex and monotone increasing functioning cost by at most*. So there is ar§ € S with

of the probability of placing an ad at the node, a binary (S, C) > (r* — r;)/c*. So long as this is at least
search will yield such & fairly quickly. The algorithm 1, the greedy algorithm will continue. We will analyze
and analysis can be extended for- 1, but toyield a  the revenue of the solution obtained by the greedy al-
guarantee that deteriorateskascreases. gorithm until it stops. Le®r be the change in revenue

To see that this algorithm need not find the optimal when the new set is added to the collection &ade
solution always, consider the example of Figure 2. If the change in cost. Then, the above analysis shows that:
a > b, SAND will pitch segment 1 at statel. How-  §r > de(r* — r,)/c*. Let us integrate this expression
ever, if the cost is sufficiently low and the fixed budget from the initial valuerq = 0, cq = 0, to the final value
sufficiently high, the optimal solution will pitch with r¢, ¢z, when the algorithm stops. This gives us
probability 1 atv2, catching all segment 1 users. Any
non-zero probablllty at1 will increase the cost with- In ( r ) > Cf orcs < c*ln ( r ) ‘
out changing the revenue.

Figure 2: A Markov chain for which &D is non-
optimal.

]
r* —ry c* r* —ry

Since the greedy algorithm terminates now—r¢) /c*

= 1. (The equality assumption is without loss of gen-
We now consider the unbudgeted SAP. The exact com-erality.) Using this, the value of the final solution is at
plexity of this problem remains one of our major open leastr; — c; > ¢*(p* — 1 — Inp*). Takingz = r*/c*,
problems. We consider a simpler version, a variation we have:

of the classical set cover problem, which we call the
prize-collecting set cover problem. Lé&t be a set of
elements{ey,...,e,}, andS be a collection of sub-
sets{Si,...,Sn} of E. Every element € FE has
an associated revenuev(e) and every sef € S has

an associated cosgbst(S). For a collection of sets

4.2 Unbudgeted SAP: Prize-collecting set cover

Theorem 2 The approximation ratio of the greedy al-
gorithmis atleast —Inz/(z — 1).

Unfortunately, this ratio goes to 0 asgoes to 1. The
algorithm has an approximation ratio bounded away
) from zero if the ratio of the profit to the cost of the opti-
C C § we definerev(C) = > . ¢y, g mev(e) and mal solution is bounded away from one; this is similar

cost(C) =3 gec cost(S). We thendefingrof (C) = iy gpirit to the variable catalog segmentation approxi-
rev(C) — cost(C). The objectiveis to pick & soasto  ationin [KPROS].

maximizeprof (C'). The connection to the SAP should  ~qsider the natural linear programming relaxation

be clear: selecting a state at which to advertize is anal-¢,; this problem. We can construct a family of instances

ogous to selecting a subset frafi with the interpre-  g,cp that integrality gap tendste-In z/(z — 1) where
tation that it “covers” the user trails that pass through . o1a is the ratio of the profit of the optimal LP solu-
it. Clearly this is also related to the unbudgeted flow- i;h o the cost of the optimal LP solution.

intercepting facility location problem.
We analyze the performance of a natural greedy al-
gorithm for this problem. Le€ = (. For the current

The greedy algorithm and the analysis for the prize-
collecting set cover in fact extend to the seemingly more
general unbudgeted SAP. A greedy algorithm along the



same lines as the algorithmaSD can be obtained for Let P,(z) denote the probability that a user from
this problem and a modified form of the above analysis process: passes through. Let d(z) be the poste-

applies. riori distribution of the processes at i.e., a;(z) =
Pi(z)/(32; Pi(z)). As alwaysrev(z) denotes the rev-
5 Dynamic advertisement problems enue from correctly targeting at andcost(z) the cost

of advertising at:.
We now consider dynamic policies, which take intoac- ~ The dilemma is the following: if we wait too long
count the path: of a user from the start state to the before advertising, we run the risk of the user vanishing
current state. A dynamic policy is a collection of func- and thereby lose potential revenue. On the other hand,
tionso; ,(z) giving the probability of pitching segment ~ waiting longer reveals more information about which
i to a user in state with historyz. Clearly, Vz, v, segment the user is from.
Yoioin(z) < 1with1 -3, 0;,(z) being the prob- A strategyo for 7 is a probability distribution on
ability of not pitching any ad to a user at statavith ~ the set{0,---,k}. Hereog(z) is the probability of
history z. We focus on the unbudgeted DAP; we will pitching nothing atz, ando;(z) is the probability of
briefly talk about the budgeted problem at the end of pitchings atz (if « is an untargeted segment, then we
this section. will pitch nothing). Adeterministic strategis a strat-

We show the following: (1) The optimum dynamic €gy inwhicho(z) € {e€g, €, .. ., €&} Wheree; is the is
policy is deterministic, i.e.g; ,(z) is either0 or 1. (2) the:-th unit vector. That is, at any node, a deterministic
The problem of computing; ,(z) reduces to a point- ~ Strategy pitches nothing or always pitches to the same
location problem in &-dimensional simplex with< segment. We give the following lemma without proof.

k + 1 regions, of which at most one is non-convex.
Unfortunately, the boundaries of the non-convex region
can be arbitrarily complicated. (3) For everythereis ~ The following is a description of the optimal strategy
a polynomially-bounded approximation of each convex which, for finite trees, trivially induces a dynamic pro-
region which delivers a revenue withirfadditively) of gramming algorithm that is polynomial in the size of
the optimal. 7 (and exponential in the number of segments.) Let

We begin in Section 5.1 by discussing the problem J C {0,1,...,k}. Thend is aJ-strategy if for: ¢
in the more general setting of arbitrary paths through J, o;(z) = 0. The optimal strategy is the optimal
an infinite tree, and then apply these results to Markov K = {0, 1,2, ..., k}-strategy. Since, the optimal strat-
processes in Section 5.2 to provide a characterizationegy is deterministic, we know that(z) is one of the
of optimal solutions. In Section 5.3 we give approxi- unit vectors or0. Consider an arbitrary. The vari-

Lemma 3 The optimal strategy is deterministic.

mation algorithms. ous options at: are either to pitch a particularat =
or to pitch nothing; recall that the optimal strategy may
5.1 Dynamic policies on infinite trees pitch nothing at some stateeven if, atz, we can be

certain that the user is from one of the targeted seg-

We begin by considering the infinite tree of all possible ments (if, for instance, at the next level there is little
histories, and then apply the lessons learned here to th%robability of the user escaping, and we will know ex-
case of Markov chains. L&t be any (possibly infinite)  actly whichtargeted segment the user belongs to). Let
tree rooted at, with vertex setX. Foreache € X, 4z &) denote the optimal profit possible for a user
let D(z) C X be the children ob, andIl(z) C X the 5t with aJ-strategy, ifd gives the posteriori distribu-
ancestors of. Note that, whereas typically denotes  tjon of the user’s segment (which is non-constant since
the history of a user, in this section it denotes a node of j; depends on ads pitched at ancestors)ofLet Z(c)
the tree since this uniquely encodes the history. denote the probability distributiciiconditioned on the

We considek& segmentqP;}, each runningonthe ;ser not belonging in segmeit Thus, z(&); = 0,
same (infinite) skeletof. Each process consists of a g g Zi(@);z = o;/(1 — «). Letp(y,z,a) denote
user who begins at the root and traces a random pathpe probability that the user moves gofrom z. Let
p = (r = @o)z1z2 -+ -z Inthe treez; € D(z;-1). a(y, z, ) denote the new posteriori distribution on seg-
At each pointz, process terminates (i.e., the uservan- ments given that the user movesgtdSuppose we pitch
ishes) with probability;(z). an ad for segment e J\{0}, the maximum profit we



can make is given by Let z; , denote the optimal revenue that can be ob-
tained from a user at a statewith mix « on the seg-

¢7:(z,d) = a;rev(s, z) — cost(i, z) ments. Recall thai(u, v, a) is the probability that the
+(1 - ) Z p(y, 2, Z(&)) b i3 (v, @y, z, Z(&))) ~ uSer moves ta, d(u, v, «) is the new posteriori dis-
veD(a) tribution on segments given that the user moves to

_ _ ~ andz; (o) is the probability distributior: conditioned
On the other hand, if we do not pitch any ad, the maxi- on the user not belonging in segmentLet T;(v, a)

mum profit we can make is given by denote the maximum possible revenue that can be ob-
tained given that we pitch an ad for segmerst the
¢oo(z, @) = Y ply,e,&)¢s(y, dy, @, ). user. Also letT}(v, ) denote the maximum possible
yeD(z) revenue that can be obtained given that we defer pitch-

ing an ad at the user. Then converting (1) from trees to

Then we have )
' Markov chains, we have:

¢J($a 62) = m?‘X{¢J,i($a 0_2)}

Ti(v,o) = ayrev(i,v) — cost(i,v)
with base casepy(z) = 0. +(1 - o) ZP(% Y, Z(a))$z,5(u,v,2i(a))’
for: > 0 and

5.2 From trees to Markov processes .
To (’U, Oé) = E :p(u’ v, a)zu,&’(u,v,a) :
We restrict our attention again to Markov chains. No- u

tice that, for any dynamic strategy, the decision to pitch \ye 455ume that at each step the user escapes with prob-
only depends on the current (posteriori) distribution on ability at leastp.. Recall that state is taken to be the

the _segments (gs de_termqmed by the history). Let US“escape” state, from which no further revenue is possi-
again denote this mix by. Then, for any state, ble. Then for allv, a, p(n, v, @) > p

Iet_ G Qenotg the se{d‘ | ¢ is the optimal pitch at ;o tice thate* . — maX¢>0{Ti(v,_a)}. The values:? .

v if the incoming mix isd}. Let Gy, be{d | & ¢ 34 pe computed as the optimal solution to the follow-

Gy foranyi}. - o ing linear program (LP1):
The sets5. , are a partition of the probability sim-

plex representing all the possible mixtures that could min : Z T o
enter state, into regions corresponding to the possible v
actions (viz, pitching any segmeifjtand declining to Zya > Ti(v, @) Yo, a,i

pitch). G4, represents the “no pitch” option. Zon >0 Vo, a

Lemma4 Forl <: <k, Giy Is convex. wherez, 5z denotes the profit starting at vertexand

As a simple corollary, note that if there is a single tar- Initial statea. o '
getable segment then the optimal policy at a fixed state  Notice that LP1 has infinitely many variables (and
v is to pitch whenever the posteriori probability that Constraints) as the parametewvaries over the proba-

the user is targetable (as determined by the history) ex-Pility simplex. ‘We will show that for a suitable dis-
ceeds some fixed threshold. cretization of the probability simplex, we can come up

with a linear program with polynomially many vari-
Observation 5 G4 ,, is not necessarily convex, as shown ables and constraints whose solution yields a strategy

in Example B of Figure 1. whose value is close to the optimal strategy.
Let us choose & > 0 as the discretization parame-
5.3 Approximating the unbudgeted DAP ter. For a probability distribution: over the segments,

) ) ) ] ] we definea, the discrete point correspondingdo as
In this section we will use a linear programming formu-  ¢,,10ws: For > 0, & is the smallest multiple of
lation to obtain an approximation for the unbudgeted |, thar;. Alsoa = 1 — Ele a;. Let P be the

DAP. For ease of notation, we will use instead of

q oo TS probability simplex consisting of all possible probabil-
alpha to denote the probability distribution on segments.

ity distributions over the segments. LBtdenote the



set{a | « € P}. We now write the following modified
linear program (LP2):

min : g Yo,

v,a€l
Yv,a > Ti(’U, Oé) V’U, acl
Yoo > 0 Vv,a €T,

wherey, o is a discretized version of, . As earlier,
the termsr’; (v, ) can be written:

Ti(v,0) = ayrev;(v) — costi(v)
‘|‘(1 - ai) ZP(U, v, Ei(a))yu’a(u’v’gi(a))a
for: > 0 and

To (’U, Oé) = Z p(u, U, O‘)yu,&‘(u,v,a) :

Lety, , denote the value of the variabjg,, in the

optimal solution to the above linear program. It can

be shown thaty , — ¢ < y5, < 2y ,, for somee

whose value depends on the discretization paranieter

The following technical lemmas are presented without

proof:

Lemma 6 Forall o € P,

o — k6.

z v,

v
8

*
v,

Notice that a basis for LP2 consists of opng, con-
straint for each variablg, .

Claim 7 LetB be a basis for LP2. Le}fa be the value
of variabley, ., in the basis solution corresponding to
B. Thenyfia < Yy

Claim 8 Let.S be an assignment of values to the vari-
ables in LP2 such that, . gets the valug;ia. If, for
some basi#, all the constraints in3 are violated by
the assignmertt, theny? , < 5,

Proof.  Letz,a = Yua — Yse. Consider the sys-
tem of linear equations given ky. We will write the
equations in terms of the variables, to obtain a new
system of equation8’. We then show that the values of
2y« IN the solution td3’ are all non-negative. Consider
any equation in the basis. It is of the formy, , =
Coat Y Pu,BYu,p Wheree, o, > 0andd p, g < 1—pe.
Note thatyy, < ¢y« + X Pu,sy; 5- The correspond-
ing equation inB' is z, o = Y Pu,2u,s + ¢, o» Where
Cho = Coa+ Y Duplss — Ysg > 0. Letz}  be

the variable with the minimum value in the solution to
B'. Thenz; , < z,g forall u, 3. andz; , > 0 since,

(1 =2 Pup)zla 2 Cua > 0. 0

Consider the optimal solutionto LP1. For eagla €
I, there is some, . constraint in LP1 which is tight.
Consider the corresponding constraint in L2, >
Cv,ot ) Pu,gYy g The set of all such constraintsin LP2
forms a basis. Let us call this.

Choose > max{(1—p.)(kd+e), pie—l)ké}. Con-
sider the assignmerft that assigns the valuyﬁa =
z, o — € to the variabley, ,. We show that for such a
value ofe, the assignmerff violates all the constraints
in B. First, note that

yfﬁ—:x*u,B—GZx*u,ﬂ—ké—e.

Consider the constraint

Yoo 2 Coja T+ Zpu,ﬁyu,ﬁ_'

Now,

Cy,a + Zpu,,@yfug_

> Cya Tt Zpu,g(x*u,ﬂ —ké —¢)

= GOy + Zpu,,@$*uaﬂ - Zpu,,@(ka - 6)
Tyo— €+ €— Zpu,ﬁ(ké —€)

Yoate— Y pup(ké—c)
Yoo + € — (1 — pe)(kd + €)
Yo,

>
>

Hence this constraint is violated. This is true of every
constraint in3.
By Claim 8, it follows thaty5, > y5, =z}, — e

Also, by Claim 7, it follows thay; ., > y5, > % ,—e.
Hencey, 5 > vy o — (k6 +¢€).

5.4 The budgeted DAP

Dynamic policies that need to work under budget con-
straints seem hard to characterize. Even in case that
the underlying graph is acyclic, the problem general-
izes theprecedence-constrained knapsaciblem. As
observed by Chekuri [Che98], this can be solved us-
ing dynamic programming. We can apply this insight
to the budgeted DAP; however, the size of the dynamic
program is exponential in the number of segments, and
grows with the magnitude of the budget.



6 Further work [KPR98] J. Kleinberg, C. H. Papadimitriou, and
P. Raghavan. Segmentation problenigtoc.

Our work raises a number of directions for further work; 30th Symposium on Theory of Computipp.

we now summarize the salientopen problems. (1) What 473-482,1998.

is the complexity of solving the unbudgeted SAP? (2) [KRRT98] R. Kumar, P. Raghavan, S. Rajagopalan,
Our algorithm for the unbudgeted DAP makes use of and A. Tomkins. Recommendation systems: A
the “leakage” assumption; while this is defensible for probabilistic analysisProc. 39th Foundations
practical purposes, can we do without it? Dispensing of Computer Sciencep. 664—673, 1998.

with this assumption may directly yield a combinatorial [PO0] Project 2000.

algorithm. (3) In the budgeted DAP, can we allocate ad www2000.0gsm.vanderbilt.edu

budget between multiple segments without recourse to[whi92] D. J. White. Markov Decision Processes
dynamic programming? (4) Can we integrate the in- John Wiley & Sons, 1992.

ference of the Markov model and the determination of
the ad policy? Here is an intuitive algorithmic frame-
work for this: as we watch a user trail, we see whether
the trail resulted in a transaction in a particular segment
(say, purchased a car). If so, we increase the likelihood
of pitching a car ad at all nodes through which that user
trail passed.
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