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Abstract

Consider two user populations, of which one istargeted
and the other is not. Users in the targeted population
follow a Markov chain on a space ofn states. The un-
targeted population follows another Markov chain, also
defined on the same set ofn states. Each time a user ar-
rives at a state, he/she is presented with information ap-
propriate for the targeted population (an advertisement,
or a recommendation) with some probability. Present-
ing the advertisement incurs a cost. Notice that while
the revenue grows in proportion to the flow of targeted
users through the state, the cost grows in proportion
to the total flow (targeted and untargeted) through the
state. How can we compute the best advertisement pol-
icy?

The world-wide web is a natural setting for such a
problem. Internet service providers have trail informa-
tion for building such Markovian user models where
states correspond to pages on the web. In this paper
we study the simple problem above, as well as the vari-
ants with multiple targetable segments. In some set-
tings the policy need not be astaticprobability distri-
bution on states. Instead, we candynamicallyvary the
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We provide characterizations which reveal interest-
ing insights into the nature of optimal policies, and
then, use these insights for algorithm design. Target-
ing problems do not seem amenable to solutions using
methods from familiar fields such as Markov decision
processes.

1 Introduction

We study stochastic optimization problems of the fol-
lowing genre. Consider two user populations, of which
one istargetedand the other is not. Users in the tar-
geted population follow a Markov chain on a space ofn states. The untargeted population follows another
Markov chain, also defined on the same set ofn states.
Each time a user arrives at a state, information appro-
priate for the target population– say, a recommendation
or an advertisement (henceforth an “ad”) – is pitched to
the user with some probability. If the ad is pitched to a
targeted user, then a revenue is obtained (and that user
disappears from the system). The act of pitching an ad
incurs a cost. Therefore the cost of a policy for pitching
ads at a state depends on sum of the targetableandnon-
targetable traffic through that state, while the revenue
dependsonly on the targetable traffic. More generally,
we may havek Markov chains, each corresponding to a
different targetable segment of users (the home-buyers,
the students preparing for the SAT’s, etc.). We have
available ads directed towards each segment (pitching
a realtor, or an SAT vocabulary list, perhaps), and rev-
enue is obtained only when an ad is pitched to a user
from the appropriate segment.

We study thestaticproblem, in which an ad is cho-
sen with some probability that depends only on the state.
We also study thedynamicpolicies, where the chosen
ad can additionally depend on the path taken by the



user to the current state. We consider each version of
the problem under two metrics. In thebudgetedmetric,
we seek to maximize revenue subject to a prescribed
ad budget (i.e., an upper bound on overall cost). In the
unbudgetedmetric, we seek to maximize the excess of
revenue over ad cost, without a fixed upper limit on the
cost.

CONTEXT. The world-wide web is a natural setting
for such problems. Currently, targeted advertisements
on the web yield a large multiple of the revenue of un-
targeted advertisements. One of our motivations is to
develop a mathematical basis for studying such issues.
The states in our Markov chains correspond naturally
to web pages; transition probabilities within a particu-
lar chain correspond to the browsing patterns of a par-
ticular segment of users. For instance, a chain mod-
eling users interested in buying a car might show that
40% (say) of such users proceed fromYahoo! ’s Auto
shopping page toautoweb.com , while 30% proceed
to Carpoint.com . While we cannot hope that every
surfer action is best modeled as Markovian, we believe
this first approximation yields valuable insights.

In this work we do not seek to infer the Markov
chains; rather, we view them as having been “learned”
from the surfing trails of prior surfers as a prelude to
tackling the optimization problems we study. Internet
service providers (ISP’s) have access to such trail in-
formation, and can thus infer such models; more on
this below. With multiple targetable segments, a large
number of sample trails (some of which may be tagged
with downstream transaction information of the form
“this surfer went on to buy a car” or simply “this surfer
clicked on an ad pitching SAT preparation materials”)
may be partitioned into segments (implicitly inducing
a set of Markov chains). One approach to this would be
to find a solution to a generalization of asegmentation
problem[KPR98]. However, our emphasis here is not
on inferring or segmenting these Markov models from
trail data; we are interested in what we can do given
these models. An interesting direction for further work
would be the integration of segmented Markov chain
inference and ad policy construction.

SUMMARY OF CONTRIBUTIONS. Section 3 gives
a more complete description of our results; we give
a quick overview here. First, unlike Markov decision
processes (MDP’s) [Whi92], there need not exist finitely-
specified optimal strategies for the dynamic version of
our problem. Nonetheless, the optimal strategy for the

dynamic version can be reduced to a point-locationprob-
lem in k-dimensional space, wherek is the number of
segments. While there are at mostk+ 1 regions, andk
of them are convex, the boundaries between the regions
may be arbitrarily complex and may have no simple
specification. Even so, at the loss of an amount� of the
revenue, it is possible to approximate the regions and
the boundaries between them in polynomial size; this
allows us to devise an algorithm for this problem.

Even if the user models are more general (not neces-
sarily Markovian), the optimal dynamic strategy is de-
terministic. In contrast, the optimal static policy (which
knows only the state a user is in, not the history of the
user) is, in general, randomized. In fact, the gap in rev-
enue between randomized and deterministic static poli-
cies can be arbitrarily large. For this case we provide
approximation algorithms that guarantee a revenue within(1� 1=e) of the optimum.

RELATED WORK. Project 2000 [P00] at Vander-
bilt University maintains an extensive collection of re-
sources pertaining to marketing on the web. There has
been much work on characterizing users in order to per-
form more effective targeted marketing [CN].

Berman, Krass, and Xu [BKX95, BKX96, BKX97]
and Hodgson [Hod90] studyflow-intercepting facility
location: the placement of billboards or gas-stations
at the nodes of a flow network (modeling traffic on a
road system) so as to maximize the amount of flow that
passes through at least one of the facilities. There is a
cost given for locating a facility at each node. They
show that given a budget, a simple greedy heuristic
gives a solution intercepting at least(1 � 1=e) times
the flow in the optimal solution. Our work differs from
theirs due to the added flexibility the web offers: (1)
Whereas their facilities are located immutably at a set
of nodes, even our static problem allows for probabili-
ties with which ads are pitched. Certainly, one cannot
imagine a gas station appearing probabilistically at a
traffic intersection; but on the web, mixed advertise-
ment policies are in fact the established norm. (2) The
ability of an ISP to easily monitor trails gives rise to
our dynamic problem; this has no analog in the world
of flow interception.

The theory of Markov decision processes [Whi92]
gives one way of viewing our setting. Unfortunately, it
offers very few computational cues for us. Indeed, as
we point out in the next section, our dynamic problem
cannot be modeled by any finite-state Markov decision



process.
Kumaret. al.[KRRT98] studyrecommendation sys-

tems, in which the system uses samples from the past
behavior of users to give them recommendations. In
their setting a user is a probability distribution on seg-
ments, and the challenge is to infer this competitively
from the sample. In contrast, our users are engaged
in a single targetable activity (segment) in any surfing
session; more importantly, this activity is to be compet-
itively inferred (for pitching) from thesequenceof user
actions (rather than a set of transactionsas in [KRRT98]).

2 The model

We are givenk Markov chains on the same set ofn
states. The states are represent the opportunities to ad-
vertise to users. The transitions represent observable
user behavior. We assume that state1 is the start state
for all k processes, andn is the finish state (in the web
context, this is the state corresponding to a user exit-
ing from a browser session). We also have an initial
mix ~� = (�1; : : : ; �k) of users belonging to each seg-
ment;

Pki=1 �i = 1. Each arriving user independently
chooses segmenti (and thus follows thei-th Markov
chain) with probability�i.
COST AND REVENUE. Our model has two sets of
parameters: a cost functioncost(i; v) which is the per-
pitch cost of showing adi (that is, an ad designed for a
user from segmenti) to a user in statev, and a revenue
functionrev(i; v) which is a per-user revenue obtained
on correctly pitching adi to a user in segmenti, while
atv. Since both cost and revenue are specified on a per-
user basis, the net cost or revenue from placing an ad at
stateu depends on the flow at (i.e., the number of users
who pass through) a node.

This provides a framework for studying two phe-
nomena that are well-known on the web: first, that
advertising on a site with large traffic (likeyahoo ) is
costlier; second, that advertising on a site with less (but
better segmented) traffic (likemedweb) is more expen-
sive on a per user basis.

Our model allows non-targeted segments, i.e., seg-
ments which are not targeted by any advertiser. These
are amongst ourk segments and modeled simply by
setting the associated revenue values to0. We wish to
point out the following important distinction: an untar-
geted segment simply adds to the flow at some (or all)
vertices, but never generates revenue. Thus, it is de-

sirable to not pitch in situations where there is a large
amount of traffic belonging to untargeted segments. On
the other hand, even if all segments were targeted, it
might be reasonable to avoid pitching at a particular
state. This depends on whether the mix of users vis-
iting the state and the cost of advertising at the state
make the net profit worthwhile.

We make one other assumption for definiteness: when
a user is correctly targeted, the user immediately exits
the system. We obtain a unit of revenue in this case,
which should be viewed as an expectation over users
who go on to make a purchase as well as those who do
not. In other words, repeatedly targeting a prospective
car-buyer with car ads does not increase the chance of
a purchase. The effect of repeated advertisements on
the probability of yielding revenue has been the subject
of considerable study in conventional media and direct
marketing [BH96], but has not been studied carefully
for the web. On the other hand, it is the web that offers
the facility for simply (and measurably) connecting a
user to a service or product via a targeted advertise-
ment.

ADVERTISEMENT POLICIES. A static advertising
policy is defined by values�i;v which denote the prob-
ability of pitching adi at statev. Clearly8v;Pi �i;v �1. In thestatic ad problem(SAP),�i;v must be some
fixed constant probability.

In the dynamic ad problem(DAP), a policy is de-
fined by functions�i;v(x) which depend on the user’s
historyx (i.e., the user’s path from the start state to statev) and return the probability of pitching adi at statev to
a user with historyx. Again,8v; 8x;Pi �i;v(x) � 1.
This setting applies to ISP’s who serve every browser
click, and thus know the instantaneous surfing trajec-
tory for each client. Note that in the dynamic setting
if we unsuccessfully pitch an ad for a segmentj, we
can thereafter concentrate our policy on segments other
thanj, for that user.

For any advertisement policy (static and dynamic),
we can compute the expected cost and the expected rev-
enue for the given Markovian user model. In the bud-
geted problem, given a boundB on the expected cost,
the objective is to obtain a policy that maximizes ex-
pected revenue. In the unbudgeted problem, the objec-
tive is to obtain a policy that maximizes the expected
profit, i.e., the expected revenue minus the expected
cost; here there is no upper bound on the cost.

For an algorithmALG , we definerev(ALG) to be



the total expected revenue of the policy produced by
the algorithm. Similarly,cost(ALG) is defined to be
the expected cost andprof (ALG), the expected profit,
i.e.,rev(ALG)� cost(ALG).
3 Overview of results

The two technical sections of the paper discuss the static
(Section 4) and dynamic (Section 5) versions of the
problem. In each section, we discuss both the budgeted
and unbudgeted versions of the problem.

STATIC ADVERTISEMENT PROBLEMS. The first ob-
servation for the static problem is that the optimal solu-
tion is not necessarily deterministic (i.e., where�i;v 2f0; 1g). Example A in Figure 1 shows a two state sys-
tem where the mix of users in the system getsrefined
with time — waiting for a while results in a mix of
users biased towards the targeted segment. The first
segment in the example is targeted; the second is not;
and the initialmix is uniform. A static policy that pitches
at stateu with some small probability is able to pitch
to most of the targetable users, but avoids the cost of
pitching to non-targetable users by probabilistically “wait-
ing” until most of them have leaked away (exited). As
the initial mixture becomes increasingly slanted towards
targeted users, the benefits of a non-integral solution
become arbitrarily large.

We give a greedy approximation algorithm to find
such a non-integral set of pitching probabilities. This
algorithm, called the SAND algorithm, generates rev-
enue within(1� 1=e) of the optimal for any fixed bud-
get.

If the budget is not fixed, but the goal is to maxi-
mize profit (revenue minus cost), the problem appears
to be more difficult. It is related to theprize-collecting
set cover problemon which there seems to be no prior
work: given a collection of sets over[n] and a rev-
enue associated with each element and cost associated
with each set, choose sets so that the revenue of the
covered elements minus the cost of the chosen sets is
maximized. We show that the natural greedy algorithm
which repeatedly chooses the set that maximizes the
ratio of the obtained new revenue to the added cost
approximates the optimal to within1 � ln r=(r � 1)
wherer is the ratio of revenue of the optimal solution
to its cost; this result is similar in spirit to the greedy al-
gorithm for the variable catalog segmentation problem
due to [KPR98].

DYNAMIC ADVERTISEMENT PROBLEMS. Unlike
static policies, we show that there is always an opti-
mal dynamic policies that is deterministic. A natu-
ral follow-on question is whether the (deterministic)
decision about pitching an ad at a state can be made
using only limited history. Unfortunately, this is not
true. Example A in Figure 1 once again gives insight
here. Imagine an initial mix of(�; 1� �) between the
targeted and non-targeted segments. As� ! 0, the
number of iterations to wait before pitching goes to1.
Thus, there is no finite bound on the size of the history
required by the optimal deterministic policy. This is
also the difference between our model and finite-state
Markov decision processes.

Next, we show that for Markovian user models, com-
puting the optimal policy is equivalent to a point loca-
tion problem in ak dimensional simplex with at mostk + 1 regions of which at most1 may be non-convex.
The i-th region corresponds to the (a posteriori) mix-
ture densities that would result in segmenti being pitched
at statev. The only non-convex region corresponds to
the mixtures where we prefer not to pitch any segment.
Unfortunately, the boundary of this region can be arbi-
trarily complicated. Example B of Figure 1 shows how
this region can be non-convex. There are three seg-
ments. For appropriate choices of�, and cost�, if the
initial mixture is(�; 0; 1� �) then the optimum policy
pitches no ad at stateu. Likewise for the initial mixture(�; 1 � �; 0). But in the convex combination of those
mixtures(�; (1��)=2; (1��)=2)), the optimum pol-
icy pitches to segment 1.

If we were to assume a constant rate of leakage at
each state (i.e., at each state every user has a constant
probability of exiting), most users exit the system fairly
quickly (within, say,O(logn) steps with high probabil-
ity). This is not unreasonable on the web, and allows us
to enumerate all possible histories of lengthO(logn)
and, by using a simple dynamic program, compute an
approximation optimum dynamic policy. If the leakage
rate, however, were relatively small (say polynomially
small), this approach fails.

Nonetheless we show that for every fixed�, there is
a polynomially-boundedapproximation of each convex
region which delivers a revenue within� (additively) of
the optimal. Further, this can be computed efficiently if
the leakage rate is at least1=poly(n). This final result
is derived by constructing an appropriate linear pro-
gram and showing that the optimum solution to the lin-
ear program approximates the regions of interest. We
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Figure 1: Example Markov chains: labels on the edges indicate the transition probabilities for the different Markov
chains; a label(p1; : : : ; pk) indicates a transition probabilitypi for thei-th Markov chain.

conclude by mentioning a dynamic-programming ap-
proach to the budgeted DAP.

4 Static advertisement problems

We consider static policies in which we seek to obtain
the optimal values for�i;v that maximize revenue. Sec-
tion 4.1 deals with the budgeted case where we obtain
a (1� 1=e)-approximation algorithm for this problem.
Section 4.2 deals with the unbudgeted version of this
problem.

4.1 Budgeted SAP: TheSAND algorithm

For a budgetB, consider frst the case of one targeted
population, and so the policy matrix~� can be treated as
a vector. This problem can be seen to be NP-hard by
reduction from knapsack.

Let B0 = B=T , whereT = n2. We now define the
sand algorithm, SAND . At each of theT rounds, SAND

increases the probability at some node such that the to-
tal cost of the policy increases by at mostB0. This node
is chosen greedily so as to maximize the improvement
in revenue of the new policy. More formally:~�  ~0;

for T steps, findu; � such that increasing�u
by � maximizesrev(~�0)� rev(~�), andcost(~�0)� cost(~�) � B0, where~�0 = ~� + �~eu;
set~�  ~� + �~eu.

Here~eu is the unit vector that has a1 in the coordinate
corresponding to vertexu and0s everywhere else.

Theorem 1 For any budgeted SAP,rev(SAND) � (1� exp (�1 + o(1))) rev(OPT):
Proof. After t rounds of greedy iteration, SAND will
have incurred overall costcostt, and generated some
revenueR0t. LetR� = rev(OPT). By the greedy choice
of the node in the(t+1)-st iteration of SAND , the cost
of the node went up by�t(� B0), thereby resulting in
at most(1 � �t=B) fraction of the difference betweenR� andR0t remaining, therebyR� � R0t+1 � (R� � Rt) � �1� �tB� : (1)

Now, the increase in cost at thet-th step is strictly less
thanB0 only if this step increases the probability of
pitching at a particular vertex to1. If the probability
of pitching at all vertices is increased to1, then clearly,
we obtain the optimal profit. If this is not the case,
thencost t > B � nB0 = B(1 � o(1)) (because at
mostn of the cost increases are less thanB0). Thus,Pti=1 �i = cost t � B(1�o(1)). Using (1) recursively,
we get R� �R0T � R� � TYi=1 �1� �iB�� R� � TYi=1 exp���iB �� R� � exp (�1 + o(1)) ;
yielding the theorem. �
The running time of SAND is T � T (n) whereT (n) is
the time to make the greedy choice. Since the cost at



u

v1

v2
(1−a, 1−b)

(a,b) (1,1)

Figure 2: A Markov chain for which SAND is non-
optimal.

a node is a convex and monotone increasing function
of the probability of placing an ad at the node, a binary
search will yield such a� fairly quickly. The algorithm
and analysis can be extended fork > 1, but to yield a
guarantee that deteriorates ask increases.

To see that this algorithm need not find the optimal
solution always, consider the example of Figure 2. Ifa > b, SAND will pitch segment 1 at statev1. How-
ever, if the cost is sufficiently low and the fixed budget
sufficiently high, the optimal solution will pitch with
probability 1 atv2, catching all segment 1 users. Any
non-zero probability atv1 will increase the cost with-
out changing the revenue.

4.2 Unbudgeted SAP: Prize-collecting set cover

We now consider the unbudgeted SAP. The exact com-
plexity of this problem remains one of our major open
problems. We consider a simpler version, a variation
of the classical set cover problem, which we call the
prize-collecting set cover problem. LetE be a set of
elementsfe1; : : : ; eng, andS be a collection of sub-
setsfS1; : : : ; Smg of E. Every elemente 2 E has
an associated revenuerev(e) and every setS 2 S has
an associated costcost(S). For a collection of setsC � S we definerev(C) = Pe2[S2CS rev(e) andcost(C) =PS2C cost(S). We then defineprof (C) =rev(C)�cost(C). The objective is to pick aC so as to
maximizeprof (C). The connection to the SAP should
be clear: selecting a state at which to advertize is anal-
ogous to selecting a subset fromS, with the interpre-
tation that it “covers” the user trails that pass through
it. Clearly this is also related to the unbudgeted flow-
intercepting facility location problem.

We analyze the performance of a natural greedy al-
gorithm for this problem. LetC = ;. For the current

collectionC and all setsS 2 S, compute
(S; C) =(rev(C [S)� rev(C))=(cost(C [S)� cost(C)): LetSmax be the set that maximizes
(S; C). If 
(Smax; C)� 1, the algorithm stops and outputsC. Otherwise, the
algorithm setsC = CSfSmaxg and repeats.

We now analyze the resulting profit. LetC� be an
optimal solution, and letc� = cost(C�); r� = rev(C�),
andp� = r�=c�. We will bound the approximation ra-
tio of the greedy algorithm in terms ofp�.

Consider the collectionCt maintained by the greedy
algorithm at staget of its execution. Letrt = rev(Ct)
and ct = cost(Ct). By adding all ofC� to Ct, we
can increase revenue by at leastr� � rt while increas-
ing cost by at mostc�. So there is anS 2 S with
(S; Ct) � (r� � rt)=c�. So long as this is at least
1, the greedy algorithm will continue. We will analyze
the revenue of the solution obtained by the greedy al-
gorithm until it stops. Let@r be the change in revenue
when the new set is added to the collection and@c be
the change in cost. Then, the above analysis shows that:@r � @c(r� � rt)=c�. Let us integrate this expression
from the initial valuer0 = 0; c0 = 0, to the final valuerf ; cf , when the algorithm stops. This gives usln� r�r� � rf � � cfc� ; or cf � c� ln� r�r� � rf � :
Since the greedy algorithm terminates now,(r��rf )=c�= 1: (The equality assumption is without loss of gen-
erality.) Using this, the value of the final solution is at
leastrf � cf � c�(p� � 1� ln p�). Takingx = r�=c�,
we have:

Theorem 2 The approximation ratio of the greedy al-
gorithm is at least1� ln x=(x� 1):
Unfortunately, this ratio goes to 0 asx goes to 1. The
algorithm has an approximation ratio bounded away
from zero if the ratio of the profit to the cost of the opti-
mal solution is bounded away from one; this is similar
in spirit to the variable catalog segmentation approxi-
mation in [KPR98].

Consider the natural linear programming relaxation
for this problem. We can construct a family of instances
such that integrality gap tends to1�ln x=(x�1) wherex here is the ratio of the profit of the optimal LP solu-
tion to the cost of the optimal LP solution.

The greedy algorithm and the analysis for the prize-
collecting set cover in fact extend to the seemingly more
general unbudgeted SAP. A greedy algorithm along the



same lines as the algorithm SAND can be obtained for
this problem and a modified form of the above analysis
applies.

5 Dynamic advertisement problems

We now consider dynamic policies, which take into ac-
count the pathx of a user from the start state to the
current state. A dynamic policy is a collection of func-
tions�i;v(x) giving the probability of pitching segmenti to a user in statev with history x. Clearly, 8x; v,Pi �i;v(x) � 1 with 1 �Pi �i;v(x) being the prob-
ability of not pitching any ad to a user at statev with
historyx. We focus on the unbudgeted DAP; we will
briefly talk about the budgeted problem at the end of
this section.

We show the following: (1) The optimum dynamic
policy is deterministic, i.e.,�i;v(x) is either0 or 1. (2)
The problem of computing�i;v(x) reduces to a point-
location problem in ak-dimensional simplex with�k + 1 regions, of which at most one is non-convex.
Unfortunately, the boundaries of the non-convex region
can be arbitrarily complicated. (3) For every�, there is
a polynomially-bounded approximation of each convex
region which delivers a revenue within� (additively) of
the optimal.

We begin in Section 5.1 by discussing the problem
in the more general setting of arbitrary paths through
an infinite tree, and then apply these results to Markov
processes in Section 5.2 to provide a characterization
of optimal solutions. In Section 5.3 we give approxi-
mation algorithms.

5.1 Dynamic policies on infinite trees

We begin by considering the infinite tree of all possible
histories, and then apply the lessons learned here to the
case of Markov chains. LetT be any (possibly infinite)
tree rooted atr, with vertex setX . For eachx 2 X ,
letD(x) � X be the children ofv, and�(x) � X the
ancestors ofx. Note that, whereasx typically denotes
the history of a user, in this section it denotes a node of
the tree since this uniquely encodes the history.

We considerk segmentsfPig, each running on the
same (infinite) skeletonT . Each process consists of a
user who begins at the root and traces a random pathp = (r = x0)x1x2 � � �xt in the tree,xj 2 D(xj�1).
At each pointx, processi terminates (i.e., the user van-
ishes) with probability�i(x).

Let Pi(x) denote the probability that a user from
processi passes throughx. Let ~�(x) be the poste-
riori distribution of the processes atx, i.e., �i(x) =Pi(x)=(Pj Pj(x)). As always,rev(x) denotes the rev-
enue from correctly targeting atx, andcost(x) the cost
of advertising atx.

The dilemma is the following: if we wait too long
before advertising, we run the risk of the user vanishing
and thereby lose potential revenue. On the other hand,
waiting longer reveals more information about which
segment the user is from.

A strategy� for T is a probability distribution on
the setf0; � � � ; kg. Here�0(x) is the probability of
pitching nothing atx, and�i(x) is the probability of
pitchingi at x (if i is an untargeted segment, then we
will pitch nothing). A deterministic strategyis a strat-
egy in which�(x) 2 f~e0; ~ei; : : : ; ~ekg where~ei is the is
thei-th unit vector. That is, at any node, a deterministic
strategy pitches nothing or always pitches to the same
segment. We give the following lemma without proof.

Lemma 3 The optimal strategy is deterministic.

The following is a description of the optimal strategy
which, for finite trees, trivially induces a dynamic pro-
gramming algorithm that is polynomial in the size ofT (and exponential in the number of segments.) LetJ � f0; 1; : : : ; kg. Then~� is a J-strategy if fori 62J , �i(x) = 0. The optimal strategy is the optimalK = f0; 1; 2; : : : ; kg-strategy. Since, the optimal strat-
egy is deterministic, we know that~�(x) is one of the
unit vectors or0. Consider an arbitraryJ . The vari-
ous options atx are either to pitch a particulari at x
or to pitch nothing; recall that the optimal strategy may
pitch nothing at some statex even if, atx, we can be
certain that the user is from one of the targeted seg-
ments (if, for instance, at the next level there is little
probability of the user escaping, and we will know ex-
actly which targeted segment the user belongs to). Let�J (x; ~�) denote the optimal profit possible for a user
atx with aJ-strategy, if~� gives the posteriori distribu-
tion of the user’s segment (which is non-constant since
it depends on ads pitched at ancestors ofx). Let ~zi(�)
denote the probability distribution~� conditioned on the
user not belonging in segmenti. Thus,~zi(~�)i = 0,
and~zi(~�)j 6=i = �j=(1 � �i). Let p(y; x; �) denote
the probability that the user moves toy from x. Let~a(y; x; �)denote the new posteriori distributionon seg-
ments given that the user moves toy. Suppose we pitch
an ad for segmenti 2 Jnf0g, the maximum profit we



can make is given by�J;i(x; ~�) = �irev(i; x)� cost(i; x)+(1� �i) Xy2D(x) p(y; x; ~zi(~�))�Jnfig(y;~a(y; x; ~zi(~�)))
On the other hand, if we do not pitch any ad, the maxi-
mum profit we can make is given by�J;0(x; ~�) = Xy2D(x)p(y; x; ~�)�J(y;~a(y; x; ~�)):
Then we have,�J (x; ~�) = maxi f�J;i(x; ~�)g
with base case,�;(x) = 0.

5.2 From trees to Markov processes

We restrict our attention again to Markov chains. No-
tice that, for any dynamic strategy, the decision to pitch
only depends on the current (posteriori) distribution on
the segments (as determined by the history). Let us
again denote this mix by~�. Then, for any statev,
let Gi;v denote the setf~� j i is the optimal pitch atv if the incoming mix is~�g. Let G�;v be f~� j ~� 62Gi;v for anyig.

The setsG�;v are a partition of the probability sim-
plex representing all the possible mixtures that could
enter statev, into regions corresponding to the possible
actions (viz, pitching any segmenti, and declining to
pitch).G�;v represents the “no pitch” option.

Lemma 4 For 1 � i � k, Gi;v is convex.

As a simple corollary, note that if there is a single tar-
getable segment then the optimal policy at a fixed statev is to pitch whenever the posteriori probability that
the user is targetable (as determined by the history) ex-
ceeds some fixed threshold.

Observation 5 G�;v is not necessarily convex, as shown
in Example B of Figure 1.

5.3 Approximating the unbudgeted DAP

In this section we will use a linear programming formu-
lation to obtain an approximation for the unbudgeted
DAP. For ease of notation, we will use� instead of~alpha to denote the probabilitydistributionon segments.

Let x�v;� denote the optimal revenue that can be ob-
tained from a user at a statev with mix � on the seg-
ments. Recall thatp(u; v; �) is the probability that the
user moves tou, ~a(u; v; �) is the new posteriori dis-
tribution on segments given that the user moves tou
and~zi(�) is the probability distribution� conditioned
on the user not belonging in segmenti. Let Ti(v; �)
denote the maximum possible revenue that can be ob-
tained given that we pitch an ad for segmenti at the
user. Also letT0(v; �) denote the maximum possible
revenue that can be obtained given that we defer pitch-
ing an ad at the user. Then converting (1) from trees to
Markov chains, we have:Ti(v; �) = �irev(i; v)� cost(i; v)+(1� �i)Xu p(u; v; ~zi(�))x�u;~a(u;v;~zi(�));

for i > 0 andT0(v; �) = Xu p(u; v; �)x�u;~a(u;v;�):
We assume that at each step the user escapes with prob-
ability at leastpe. Recall that staten is taken to be the
“escape” state, from which no further revenue is possi-
ble. Then for allv; �, p(n; v; �)� pe.
Notice thatx�v;� = maxi�0fTi(v; �)g. The valuesx�v;�
can be computed as the optimal solution to the follow-
ing linear program (LP1):min :Xv;� xv;�xv;� � Ti(v; �) 8v; �; ixv;� � 0 8v; �;
wherexv;~� denotes the profit starting at vertexv and
initial state~�.

Notice that LP1 has infinitely many variables (and
constraints) as the parameter� varies over the proba-
bility simplex. We will show that for a suitable dis-
cretization of the probability simplex, we can come up
with a linear program with polynomially many vari-
ables and constraints whose solution yields a strategy
whose value is close to the optimal strategy.

Let us choose a� > 0 as the discretization parame-
ter. For a probability distribution� over the segments,
we define��, the discrete point corresponding to�, as
follows: For i > 0, ��i is the smallest multiple of�
less than�i. Also ��0 = 1 �Pki=1 ��i. Let P be the
probability simplex consisting of all possible probabil-
ity distributions over the segments. Let� denote the



setf�� j � 2 Pg. We now write the following modified
linear program (LP2):min : Xv;�2� yv;�yv;� � Ti(v; �) 8v; � 2 �; iyv;� � 0 8v; � 2 �;
whereyv;� is a discretized version ofxv;�. As earlier,
the termsTi(v; �) can be written:Ti(v; �) = �irev i(v)� costi(v)+(1� �i)Xu p(u; v; ~zi(�))yu;~a(u;v;~zi(�));

for i > 0 andT0(v; �) = Xu p(u; v; �)yu;~a(u;v;�):
Let y�v;� denote the value of the variableyv;� in the

optimal solution to the above linear program. It can
be shown thatx�v;� � � � y�v;� � x�v;�, for some�
whose value depends on the discretization parameter�.
The following technical lemmas are presented without
proof:

Lemma 6 For all � 2 P ,x�v;�� � x�v;� � k�:
Notice that a basis for LP2 consists of oneyv;� con-
straint for each variableyv;�.

Claim 7 LetB be a basis for LP2. LetyBv;� be the value
of variableyv;� in the basis solution corresponding toB. ThenyBv;� � y�v;�.

Claim 8 LetS be an assignment of values to the vari-
ables in LP2 such thatyv;� gets the valueySv;�. If, for
some basisB, all the constraints inB are violated by
the assignmentS, thenySv;� � yBv;�
Proof. Let zv;� = yv;� � ySv;�. Consider the sys-
tem of linear equations given byB. We will write the
equations in terms of the variableszv;� to obtain a new
system of equationsB0. We then show that the values ofzv;� in the solution toB0 are all non-negative. Consider
any equation in the basisB. It is of the formyv;� =cv;�+P pu;�yu;� wherecv;� > 0 and

P pu;� � 1�pe.
Note thatySv;� � cv;� +P pu;�ySu;� : The correspond-
ing equation inB0 is zv;� = P pu;�zu;� + c0v;�, wherec0v;� = cv;� +P pu;�ySu;� � ySu;� � 0. Let z�v;� be

the variable with the minimum value in the solution toB0. Thenz�v;� � zu;� for all u; �. andz�v;� � 0 since,(1�P pu;�)z�v;� � c0v;� � 0. �
Consider the optimal solution to LP1. For eachv; � 2�, there is somexv;� constraint in LP1 which is tight.

Consider the corresponding constraint in LP2,yv;� �cv;�+P pu;�yu;�� The set of all such constraints in LP2
forms a basis. Let us call thisB.

Choose� > maxf(1�pe)(k�+�); 1pe�1)k�g. Con-

sider the assignmentS that assigns the valueySv;� =x�v;� � � to the variableyv;�. We show that for such a
value of�, the assignmentS violates all the constraints
in B. First, note thatySu;�� = x�u; �� � � � x�u; � � k� � �:
Consider the constraintyv;� � cv;� +X pu;�yu;�� :
Now,cv;� +X pu;�ySu;��� cv;� +X pu;�(x�u; � � k� � �)= cv;� +X pu;�x�u; � �X pu;�(k� � �)= x�v;� � �+ ��X pu;�(k� � �)= ySv;� + � �X pu;�(k� � �)� yv;� + � � (1� pe)(k� + �)> yv;�:
Hence this constraint is violated. This is true of every
constraint inB.

By Claim 8, it follows thatyBv;� � ySv;� = x�v;� � �.
Also, by Claim 7, it follows thaty�v;� � yBv;� � x�v;���.
Hence,y�v;�� � y�v;� � (k� + �).
5.4 The budgeted DAP

Dynamic policies that need to work under budget con-
straints seem hard to characterize. Even in case that
the underlying graph is acyclic, the problem general-
izes theprecedence-constrained knapsackproblem. As
observed by Chekuri [Che98], this can be solved us-
ing dynamic programming. We can apply this insight
to the budgeted DAP; however, the size of the dynamic
program is exponential in the number of segments, and
grows with the magnitude of the budget.



6 Further work

Our work raises a number of directions for further work;
we now summarize the salient open problems. (1) What
is the complexity of solving the unbudgeted SAP? (2)
Our algorithm for the unbudgeted DAP makes use of
the “leakage” assumption; while this is defensible for
practical purposes, can we do without it? Dispensing
with this assumption may directly yield a combinatorial
algorithm. (3) In the budgeted DAP, can we allocate ad
budget between multiple segments without recourse to
dynamic programming? (4) Can we integrate the in-
ference of the Markov model and the determination of
the ad policy? Here is an intuitive algorithmic frame-
work for this: as we watch a user trail, we see whether
the trail resulted in a transaction in a particular segment
(say, purchased a car). If so, we increase the likelihood
of pitching a car ad at all nodes through which that user
trail passed.
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