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Abstract

We develop a technique we callspectral filtering, for
discovering high-quality topical resources in hyperlinked
corpora. Through relevance and quality judgements col-
lected from 37 users, we show that, over 26 topics, spec-
tral filtering usually finds web pages that are rated bet-
ter than those returned by the hand-compiled Yahoo! re-
source list, and by the Altavista search engine.

1 Introduction

As the amount of information available on-line grows ex-
ponentially, the user’s capacity to digest that informa-
tion cannot keep pace [24, 30]. In this paper we address
the problem of distilling high-quality sources of informa-
tion on broad topics in hyperlinked corpora (such as the
WWW). As an example, we seek algorithms that can an-
swer the question: “What are the twenty best pages on the
web about History?” There are over five million pages on
the web today that contain the word history; we seek only
twenty, but they must be exemplary.

The authors of [3] present a system called ARC which
addresses the same problem; our results differ in two re-
spects. First, the algorithms presented here are more gen-
eral and, guided by the lessons learned in [3] and subse-
quently, more effective. Second, the earlier paper com-
pared ARC to two familiar web engines. Subjects per-
forming the comparison visited all three sites and made
judgements based on quality of resourcesand issues of
presentation within each engine. In the current study,
we decouple the presentation of a page from its content.
Thus, we consider only whether an engine contains links
to high-quality resources, and leave other value added
by the engine (such as brief annotations describing each�Department of Computer Science, University of California,Berke-
ley. This work was done while the author was at IBM Almaden Research
Center.

page) as an orthogonal component of engine quality. We
discuss these distinctions in further detail, below.

Our approach to resource discovery is a general tech-
nique calledspectral filtering, which is based on the
spectral properties of matrices derived from relationships
within the corpus (Section 2). Unlike traditional web
search, spectral filtering estimates the quality of a page
using both thecontentof the page, and thecontextof
the page: the pages it points to, the pages that point to
it, and the web neighborhood in which it appears. More-
over, spectral filtering circumvents the computational bot-
tlenecks associated with numerical and algebraic methods
such as LSI.

For a set of 26 broad topics benchmarked previously
by [1, 3],1 we compare spectral filtering to Altavista, a
popular web search engine, and to Yahoo!, a taxonomy
of hand-generated lists of resources on a large number of
topics. To perform this comparison we need a metric that
does not require a benchmark corpus (such as TREC [25])
for which expert relevance judgements are readily avail-
able. We adoptcomparitive precision, which is akin to
traditional precision except that relevance judgements are
performed by users on the set of pages returned by spec-
tral filtering, Altavista, and Yahoo!, rather than on the en-
tire web (Section 3.1). It is important to note that the users
do not know which system generated which page. With-
out judgements for a substantial fraction of the entire web,
we cannot compute an analog to recall; so following [1],
we adopt comparitive precision of a fixed number of pages
as our metric.

Under this metric, spectral filtering performs substan-
tially better than Altavista, and typically outperforms the
hand-constructed resources of Yahoo! as well (Section
3.3). This latter result seems surprising, but spectral filter-
ing has three advantages over Yahoo!. First, an automatic

1Prior studies contained 28 topics. We omitted one query, “archi-
tecture,” because our evaluators could not be sure whether we meant
“buildings” or “computers”; and a second query, “Zen Buddhism,” be-
cause none of our evaluators for that query completed the evaluation.
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system can consider many more candidate pages than a
manual approach. Second, spectral filtering uses the hu-
man effort implicit in the largely hand-built link-structure
of theWWW, so while the search is fully automatic, it in-
corporates human judgements. And third, the set of 26
topics was generated without reference to any search en-
gine or site, so while some of the topics correspond ex-
actly to Yahoo! nodes, some do not.

2 The spectral filtering method

Kleinberg [13] builds on notions from bibliometry [26]
in developing theHITS technique for searching hyper-
text. Since spectral filtering generalizesHITS, we begin
with a review (Section 2.1) of the technique. Follow-
ing this, we develop spectral filtering (Section 2.2) and
specialize it for the web (Section 2.3). We then show
how this method may be specialized to yield a variety
of application-dependent searching and clustering tech-
niques (Section 2.4). Finally, we discuss some compu-
tational issues (Section 2.5) and describe prior work (Sec-
tion 2.6).

2.1 An overview of the HITS technique

HITS performs resource discovery on the web, producing
two distinct but related types of pages in response to a
topic query:hubsandauthorities. Hubs and authorities
exhibit a mutually reinforcing relationship: a good hub
points to many good authorities, and a good authority is
pointed to by many good hubs.2 The algorithm begins by
constructing aroot setof pages that are likely to be rele-
vant to the topic. This construction is arbitrary, but could
be performed by creating aninitial set of pages by query-
ing a traditional search engine using the topic as query,
and then expanding this set to the full root set by including
all pages that point to, or are pointed to by, a page in the
initial set (Figure 1). The algorithm then associates with
each pagep a hub-weighth(p) and anauthority-weighta(p), all initialized to 1. HITS then iteratively updates
these weights as follows:a(p) :=Xq!ph(q); h(p) :=Xp!q a(q):
To restate using linear algebra, letA = [aij] denote the

adjacency matrix of the directed graph of hyperlinks con-
necting the pages in the base set:aij = 1 if pagei has a
link to pagej, and 0 otherwise.HITS may then be viewed
as repeatedly iterating the following matrix operations on
the vectorsh anda corresponding to the hub and author-
ity scores of all pages:h Aa; a ATh (1)

2Pages can be both good authorities and good hubs.

Initial
Set

Root
Set

Figure 1: Expanding the initial set into a root set.

From classical matrix theory [12], it follows that with ap-
propriate renormalization,h (resp. a) converges to the
principal eigenvector ofAAT (resp. ATA). Kleinberg
further points out that by analogy withspectral graph par-
titioning [9], thenon-principaleigenvectors ofAAT andATA can be used to partition the pages into groups of re-
lated hubs and authorities, respectively.

2.2 Spectral filtering

Rather than focusing on web pages, in spectral filtering
we consider arbitraryentities. These may be web pages,
documents, terms, or other structures. WhileHITS ex-
ploits the annotative power latent in hyperlinks, we wish
to think more generally in terms of “what does entityi
say about entityj?” To quantify this, we define a numer-
ical affinity from i to j denotedaij. At a high level, our
method consists of three steps:

1. acquisition of the root setS of entities to be analyzed.
In many applications of spectral filtering this process
consists of obtaining an initial set via a Boolean key-
word search and then expanding it to include neigh-
bors (one link distance away);

2. approximate calculation of one or more of the eigen-
vectors of one or both of two possible similarity ma-
trices (defined below);

3. analysis of the computed eigenvector(s) to rank
and/or partition the set of entities.

We now give the algorithm more formally for the case
of discovery of authoritative sources, which corresponds
to the analysis of principal eigenvectors. Section 2.4 ex-
tends to applications that require non-principal eigenvec-
tors. Letn = jSj and letaij be a non-negative real-valued
affinity of the ordered pair of entities(i; j), so aij need
not equalaji. Typically, eachaij is a carefully-chosen
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function of the terms and (where applicable) links in the
entities; this choice is corpus- and application-dependent.
(In HITS, for instance,aij is a boolean value indicating the
presence of an edge from pagei to pagej.) LetA = [aij].
We perform exactly the iterations of (1) to arrive at hub
and authority scores converging to the principal eigen-
vectors (those associated with the largest eigenvalue) ofATA andAAT , respectively (we call thesesimilarity ma-
trices).3 Then, we output the entities with the largest en-
tries in the principal eigenvector ofATA (resp.AAT ) as
the top authorities (resp. hubs).

2.3 Spectral filtering for web pages

In this section we adapt spectral filtering to theWWW,
identifyingand addressing some problems with the simple
affinity function used inHITS. The generation of the root
set follows the description of Section 2.1. Letaij = 0 if
there is no link from pagei to pagej, and is positive if a
link exists. The value of the affinity is a sum of three com-
ponents: the first is a default value given to every link, the
second component depends on which, if any, of pagei andj fall within the initial set, and the third has a contribution
from each query term. The contribution of a query term
appearing at distancei within a windowW of terms from
the hyperlink is proportional toW�i. Query terms within
quotes are treated as atomic units, so the word “car” gen-
erates no contribution for the query “vintage car.”

We also modify the basic algorithm in several ways.
Each modification is motivated by a specific idiosyncrasy
of the web. We describe these modifications now.� Same-site Pages:To avoid self-promotion, or web

sites that confer authority upon themselves, we dis-
card links to pages on the same site. We define two
pages to be on thesamewebsite using the follow-
ing heuristic: class A and B IP addresses must match
two most significant octets; class C addresses must
match three most significant octets, and class D ad-
dresses must match all four octets.� Covering Heuristic:The value of a hub page is by
definition in its links rather than its contents. If all the
destinations accessible from a particular hub are also
accessible from better hubs, we do not need to out-
put this hub. More generally, we seek to return a set
of hub pages that together contain as many unique,
high-quality links as possible. We therefore apply

3The matrixA as presented contains affinities between entities of the
same type. A straightforward generalization gives affinities between en-
tities of different types, e.g., a term-document matrix. Inthis case, the
rows ofA could correspond to terms, and the columns to documents.
AlthoughA may not be square,ATA andAAT are square and sym-
metric.

a well-known greedy set-cover [15] heuristic as fol-
lows. Once the iteration step has converged, we re-
peat the following process until we have generated
the correct number of hubs: return the best hub, zero
the authority values of all pages pointed to by the
hub, and recompute hub values.� Packing Heuristic: Despite the same-site link re-
moval heuristic, it is possible for instance for an or-
ganization’s homepage, and several children of that
page, to accumulate authority. However, in the final
output we wish to provide the user with as much au-
thoritativesubstance as possible in a small number of
pages. To achieve this, after each step of the iteration
we “re-pack” the authority of any site, as follows: if
multiple documents within a logical site (as defined
above) have non-zero authority, the authorities of all
but the page with the largest authority are set to zero.� Hub Functions:Many resource compilations (e.g.,
bookmark files) contain pages pertinent to a number
of disjoint topics. This causes such compilations to
become good hubs, which in turn causes irrelevant
links from the same page to become good authori-
ties. To address this problem we note that pointers
to pages on the same topic tend to be clustered to-
gether in resource compilations. We allow each link
in a web page to have its own hub value, so the hub
value of a page is now a function of the particular
link rather than a constant. When computing author-
ity values, the authority of the destination is incre-
mented by the hub value of the link. When recom-
puting hub values, the authority value of the destina-
tion is used to increment the hub value of the source
link, and according to a spreading function, the hub
values of neighboring links. Thus, useful regions of a
large hub page can be identified. The final hub value
of a page is the integral of the hub values of its links.

Convergence of the spectral filtering computation pre-
sented in Section 2 depends on phrasing the iterated steps
as a matrix multiplication. We must determine whether
the modifications described above still fit the framework.
Notice that the same-site and covering heuristics are sim-
ply pre- and post-processing steps, and the hub func-
tion heuristic is a linear transformation that may be ex-
pressed as a matrix multiplication. With these heuristics,
we still have guaranteed convergence. But packing heuris-
tics are non-linear, so we have a nonlinear dynamical sys-
tem whose convergence is not guaranteed. In practice,
however, the results converge rapidly in all cases we have
considered.
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2.4 Spectral filtering for other domains

Spectral filtering is a technique we have developed for the
web, but it applies more generally to other corpora and
to other tasks. We briefly discuss these applications, and
also compare the approach to LSI.

Other corpora We mention in passing that we have
successfully applied to a number of corpora besides the
WWW. For non-hyperlinked corpora, one way we have
applied spectral filtering is by defining the affinity func-
tion as follows: for documentsi; j let ji \ jj denote
the number of terms they have in common. Letaij =ji \ jj=jij, wherejij denotes the number of terms ini.

We have also applied spectral filtering totime-serial
corporasuch as the US Patent database and the Supreme
Court rulings. Here the citations only go backwards in
time; the fact that the iterations in spectral filtering go
back and forth across (possibly weighted) links is crucial
in extracting structure. If, for instance, one were to only
iterate along citations (but never in the reverse direction),
all the authority would end up in the oldest cases/patents.

Other applications Spectral partitioning can be used
for clustering and partitioning either a corpus or a se-
lected subset as follows. Having set up the matrixA as
before, we can also compute the non-principal eigenvec-
tors ofATA. SinceATA is real and symmetric, its eigen-
vectors are real. We can view the components of each
non-principal eigenvector as assigning to each document
a position on the real line. We examine the values in the
eigenvector (in sorted increasing order). At the largest
gap between successive values, we declare a partition into
those documents corresponding to values above the gap,
and those documents with values below. This is illustrated
in Figure 2. We may view the entries ofATA as (sym-
metric) “authority similarities” between documents, and
likewise those ofAAT as “hub similarities”. Intuitively,
the eigenvector operations serve to pull together groups
of documents that are all close to one another under the
authority (or hub) similarity function.

Spectral filtering also applies to the problem of collab-
orative filtering [11], though we do not provide experi-
mental data. Consider a setting with two kinds of entities:
documents, and people who access them (the precise no-
tion of “access” may be application-dependent). For per-
soni and documentj, let aij = 1 if i accessesj and 0
otherwise (aij could be some non-negative function such
as the frequency of access). Now, partitioning using the
non-principal eigenvectors would group the people into
subsets with similar document-access patterns, and also
group the documents into subsets. More generally, the
“documents” could be products or other preferences ex-
pressed by the people.

Finally, we mention a closely-related application that
uses the resulting eigenvectors of similarity matrices fora
different purpose. Latent Semantic Indexing[10] (LSI) is
a dimensionality reduction technique based on SVD[12]
that captures the “latent semantic structure” of a corpus.
LSI starts with a term-document matrixA, performs an
SVD of A, and uses the subspace spanned by the first
few (say 100) singular vectors for information retrieval.
Both documents and queries are projected into the “doc-
ument” subspace, where their similarity is measured by,
say, the inner product between the two projected vectors.
The similarity between LSI and spectral filtering is clear;
they differ in the way the eigenvectors are used.

2.5 Computational issues

The performance of numerical eigenvector computations
is often a bottleneck, especially in dealing with large cor-
pora. Spectral filtering avoids this bottleneck for three
reasons:

1. Numerical convergence is not our goal when we wish
to rank/group documents by their scores in eigenvec-
tors. Rather, it is the relative ranks of the eigenvector
entries that matter. Typically, 5 iterations suffice to
stabilize the ranks of hubs and authorities, far fewer
than required for numerical convergence.

2. The computation is restricted to a relevant subset of
the corpus.

3. A is typically very sparse.

2.6 Related prior work

Hyperlinks have been explicitly used in information re-
trieval for ranking (Section 2.6.1) and forstructure dis-
covery (Section 2.6.2). For most information retrieval
tasks, ranking provides an ordering of documents based
on relevance to a query. In contrast, the ranking induced
by our system tries to capture perceived quality with re-
spect to a query. Structure discovery, on the other hand,
refers to tasks like clustering and the identification of ag-
gregates in hypertext.

Each of these two categories can be further divided cor-
responding to the following four types of attributes used
to perform the operations:text, bibliographic citations,
hyperlinks, andhypertext.

2.6.1 Ranking

Text The bulk of the work and literature in information
retrieval has been about the use of only the document’s
text. See for example NIST’s TREC[25] proceedings, or
the excellent texts [18] and [20]. Accordingly, evaluation
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Figure 2: The partitioning process: an eigenvector (top) and the documents ordered on the line (bottom). A split is
made between 3 and 11.

of retrieval systems has centered around text-only bench-
marks that emphasize the notion ofrelevance, which is in
general distinct from quality, making it necessary for us
to resort to user studies on hyperlinked corpora for which
no benchmark for quality is yet standard.

Bibliographic citations This field, known as “biblio-
metrics”, has focused primarily on the scientific literature.
Work in this field is focussed on exploiting structure char-
acterized by the following mutually dual similarity mea-
sures between documents: “bibliographic coupling” (the
number of common citations they contain [26]) and “co-
citation” (the frequency with which both appear as cita-
tions in the same document [22].) See the reviews [28]
and [14]. Such similarity measures can be coupled with
textual similarity, as in the HyPursuit system [27].

Hyperlinks There are numerous methods in this cat-
egory, including theHITS algorithm described above,
PageRank [2], WebQuery [6], and the “Topic Distillation”
work of Bharat and Henzinger [1]. PageRank ranks web
pages by simulating a random walk on the web, which
can be described by a Markov chain whose steady-state
probabilities are then taken as the ranks given to the cor-
responding documents. The entire web (or a large fraction
of it) is ranked this way and then the response (i.e., “hit
list”) to a Boolean query is sorted by this rank before it is
presented to the user. Note that our ranking is not only a
function of the web graph, but also of the specific query
for which the ranking is computed. “Connectivity” (total
link count, both in- and out-links) is used in a visualiza-
tion scheme to rank pages in WebQuery. Finally, Bharat
and Henzinger identify and address some problems asso-
ciated withHITS and with [3], which introduces the notion
of using the query terms to build the matrixA.

Hypertext Many methods for hyperlink- and text-based
relevance ranking are known. Croft and Turtle [7] propose
a scheme for incorporating hypertext links as well as bib-
liographic citations into an information retrieval systemin
which the relevance of a document to a query is computed
by a Bayesian network. Savoy [21] describes a family

of relevance-ranking schemes for doing query-based in-
formation retrieval in hypertext. The scheme uses both a
term-based inverted index and links that can be either bib-
liographic citations, hyperlinks, or both. Certain aspects
of this approach resemble ours. For example the acquisi-
tion and expansion of the root set are virtually identical.
For the actual ranking, however,spreading activationis
used. The starting activation values are computed based
on linguistic similarity to the query. Marchiori [16] com-
putes a relevance ranking function for hypertext pages that
incorporates a measure of the relevance of the pages to
which they point. This measure utilizes any ranking func-
tion based solely on the textual content of the pages them-
selves.

2.6.2 Structure discovery

Text The text-only version of structure discovery is sim-
ply clustering. See [29] for a review.

Bibliographic citations Some work has been done on
the use of only bibliographic citations to discover struc-
ture in a corpus. For example Small[22] uses citations to
discover clusters, which he refers to as “co-citation net-
works.” A similar study of citation graphs is undertaken
by Larson [23].

Hyperlinks As discussed, the method ofHITS includes
a purely link-based method of structure discovery: find-
ing clusters using higher-order eigenvectors. Though de-
ployed only for hypertext, it could also be used for pure
citation-based clustering.

Hypertext Pirolli, Pitkow, and Rao [17] address the
problem of identifying aggregates of pages that corre-
spond to a conceptually unified entity. They use (among
other things) link structure, usage paths (taken from server
logs), text, and meta information about pages. Rivlinet.
al. [4, 5, 19], address a similar issue in the context of pro-
viding the user with better navigational aids. They intro-
duce the notion of index (high out-link count) and refer-
ence (high in-link count) nodes, similar to theHITS notion
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of hubs and authorities. Weisset. al. [27] describeHy-
Pursuit, a similar structure-based hypertext navigational
system.

3 Experiments on theWWW

We have implemented the algorithm of Section 2.3 in a
system called Clever, which performs spectral filtering for
the web. This section reports on an experiment compar-
ing Clever to Altavista and Yahoo!. Section 3.1 highlights
some difficulties that arise in applying traditional infor-
mation recall metrics to theWWW. Section 3.2 describes
our experiments, and Section 3.3 gives results. Section 3.4
includes some discussion.

3.1 Performance evaluation for theWWW

Traditionally, retrieval systems are evaluated using the
measures of precision and recall on a large pre-evaluated
corpus [20]. As there is no standard benchmark for the
web that has been rated and classified, we cannot take this
approach directly. But the situation is worse than this:� The web currently contains around 300 million doc-

uments so rating the entire corpus is a daunting task.
But we cannot label only a small subset because
broad-topic queries routinely return a million page
hits scattered around the web.� Even if it were possible to create such a corpus, a
million new pages arrive daily, so the corpus could be
used to evaluate actual search engines for only a brief
window (probably shorter than the time to gather the
relevance judgements) before too many new pages
arrived.� The composition of a “typical” web document in
terms of inlinks, outlinks, average size, graphical
content, layout, function, etc., is dynamic. Even if
we are not interested in comparisons that include
actual search engines, and instead wish to label a
snapshot of the web then compare algorithms on this
snapshot, results for the web of a few years ago may
not generalize to the web of today.� Existing labeled corpora such as TREC[25] are pri-
marily standalone text while we examine algorithms
that rely fundamentally on the hyperlinked nature of
the web. Even other hyperlinked corpora tend to con-
tain documents of much higher quality than the web.
So modifying existing labeled corpora for evaluating
web-targeted algorithms is also difficult.� The closest approximations to “relevance judge-
ments” on today’s web are sites such as Yahoo![31],

which through human involvement collect high-
quality pages on a number of topics. Unfortunately,
due to the growth figures given above these sites can-
not hope to index all pages on the web. If a search
engine returns a page on a particular topic that is also
indexed by Yahoo! under that topic, we have a strong
indication that the page is high quality. If, however
(as is more likely), Yahoo! does not index the page,
we have no information about the quality of the page.

3.2 Our experiment

Because of these difficulties, we choose to evaluate our
approach using relevance judgements (gathered through
a user study) of a small subset of the web. We there-
fore compare ourselves against the best-known automatic
search engine, Altavista[8], and the best-known human-
compiled resource site, Yahoo![31]. We compute the pre-
cision of all three sources on a fixed number of pages
according to our user-provided relevance judgements and
compare these results. We refer to this technique ascom-
paritive precision.

More precisely, for each of the 26 queries listed in
Table 1 we extracted ten pages from each of our three
sources. Altavista and Clever were both given the query
as it appears in the table (i.e., with quotes, plus-signs, and
capitalization intact). The same search was entered man-
ually into Yahoo!’s search engine, and of the resulting
leaf nodes, the one best matching the query was picked
by hand. If the best match contained too few links, the
process was repeated to generate additional links. Using
this procedure we took the top ten pages from Altavista,
the top five hubs and five authorities returned by spectral
filtering, and a random ten pages from the most relevant
node or nodes of Yahoo!4. We then interleaved these three
sets and sorted the resulting approximately 30 pages al-
phabetically (there are almost never duplicate pages from
the three sources). We asked each user to rank each of
these pages “bad,” “fair,” “good,” or “fantastic” based on
how useful the page would be in learning about the query.
We took good and fantastic pages to be relevant, and then
computed precision in the traditional manner. Since our
users evaluated only the pages returned from our three
sources, but did not know which source returned which
page, we refer to this type of data asblind post-factorele-
vance judgements.

The subjective evaluation of relevance was performed
by a set of 37 subjects, yielding 1369 datapoints. The
subject was free to browse the list of pages at leisure, vis-
iting each page as many times as desired, before deciding
on a final quality score.

4Yahoo! lists pages alphabetically and performs no ranking,hence
the requirement that we take ten pages at random.
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Figure 3: Average precision over all queries of the ten
documents returned by each system

3.3 Results

Average precision. Figure 3 shows the average com-
paritive precision of each search engine over the set of
26 queries; Table 1 then shows these precision values for
each topic.5 Clever outperformed both Yahoo! and Al-
tavista under this metric. While the favorable compar-
ison to Altavista was expected, the advantage over Ya-
hoo! was surprising. An analysis of the standard devia-
tion across queries shows that in fact the results for Clever
were slightly more tightly clustered than for Yahoo! (stan-
dard deviation of:19 versus:21), and that results for Al-
tavista were consistently lower than for the other systems
(standard deviation of:10). Similarly, Figure 4 consid-
ers the fraction of queries on which each search engine
performed best. In81% of all topics, Clever was either
the best in terms of precision or tied for first place with
Yahoo!

Page Rankings. The previous figures consider the aver-
age comparitive precision across all pages returned by a
particular engine. We now consider the rank assigned to a
page by each engine. Figure 5 plots the average precision
of the topi pages for each engine, fori = 1 : : :10. For
this purpose, the ranking function that we use for Clever
interleaves the hubs and authorities starting with the best
hub.

One possible concern is that a large Yahoo! node
may contain many good pages and some excellent ones.
Choosing only ten pages at random from such a node may
penalize Yahoo! for gathering more information on the
topic. However, almost all our Yahoo! nodes contained
fewer than 30 pages, and the correlation of precision to
Yahoo! node size is minimal, only�0:09. This indicates

5Note that, while the authors of [1] report precision values for a sim-
ilar system, private communication from the authors suggests our preci-
sion figures are not directly comparable with theirs.

Query Yahoo! AltaVista Clever

+Thailand +tourism 0.3 0.0 0.2
+recycling +cans 0.1 0.1 0.4

“Gulf war” 0.5 0.1 0.3
“affirmative action” 0.6 0.2 0.6
“amusement park” 0.0 0.1 0.4
“classical guitar” 0.3 0.2 0.5
“computer vision” 0.7 0.4 0.8

“field hockey” 0.1 0.1 0.2
“graphic design” 0.2 0.1 0.2
“lyme disease” 0.6 0.1 0.6
“mutual funds” 0.7 0.4 0.5

“parallel architecture” 0.2 0.2 0.3
“rock climbing” 0.6 0.1 0.8

“stamp collecting” 0.2 0.3 0.5
“table tennis” 0.6 0.1 0.6
“vintage car” 0.1 0.2 0.2

HIV 0.4 0.3 0.8
alcoholism 0.2 0.2 0.4
bicycling 0.4 0.0 0.2

blues 0.5 0.1 0.6
cheese 0.6 0.2 0.6
cruises 0.5 0.4 0.5

gardening 0.5 0.1 0.4
shakespeare 0.6 0.1 0.6

sushi 0.4 0.2 0.7
telecommuting 0.4 0.2 0.8

Table 1: Comparitive precision by topic.

Figure 4: Percentage of topics for which each system had
the highest number of high-quality relevant documents.
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Figure 5: Precision as a function of the rank of pages.

Figure 6: Scatter of hub and authority scores.

that the concern is not serious.

Hubs and Authorities. The precision scores of hubs
and authorities show only a mild correlation (:36). Fig-
ure 6 shows the scatter plot by topic; in some cases hubs
dominate, and in others authorities dominate, suggesting
that users find value in both types of pages. Overall,
Clever is better at identifying hubs than authorities — in
72% of the queries, the comparitive precision of the hubs
was at least as high as the authorities.

Other overall comparative measures. We also give
two alternate measures of overall quality. The first mea-
sure, “fantastic fraction,” is the fraction of pages returned
that are rated as “fantastic” (rather than either “good” or
“fantastic” in our original measure). The second, “linear
measure,” weights a “bad” page at0, a “fair” page at:33, a
“good” page at:66 and a “fantastic” page at1. The results
for these measures are given in Table 2. Clever performs
better than all other systems under all measures, although
Yahoo! finds roughly as many “fantastic” pages.

Measure Yahoo! Altavista Clever

Precision .38 .18 .48
Fantastic Fraction .13 .04 .15
Linear Measure .42 .27 .50

Table 2: Alternate Overall Quality Ratings, by Search En-
gine.

3.4 Discussion

It remains unclear how to judge the response set of a
search engine as a whole, rather than page-by-page. Both
the covering and the packing heuristics may reject pages
that are individually highly rated in favor of pages that
contribute to the overall quality of the response set. Hence
we believe that the quality of our result set as a collection
of pages will be better than the average precision metric
indicates.

4 Conclusions

We have shown that spectral filtering is an effective tech-
nique for analyzing text and hypertext for searching, parti-
tioning, and estimating a notion of document quality. This
technique both is general and flexible: by appropriately
modifying the notions of entities and links, one can ex-
tract interesting structure from a wide variety of hyper-
linked and non-hyperlinked corpora. We have a prototype
implementation that is simple and fast; the only perfor-
mance bottleneck is the inherent delay of scanning and
indexing a large corpus.
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