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Abstract page) as an orthogonal component of engine quality. We
discuss these distinctions in further detail, below.
We develop a technique we capectral filtering for  Our approach to resource discovery is a general tech-
discovering high-quality topical resources in hyperlidkenique calledspectral filtering which is based on the
corpora. Through relevance and quality judgements cgpectral properties of matrices derived from relationship
lected from 37 users, we show that, over 26 topics, spedthin the corpus (Section 2). Unlike traditional web
tral filtering usually finds web pages that are rated befearch, spectral filtering estimates the quality of a page
ter than those returned by the hand-compiled Yahoo! igsing both thecontentof the page, and theontextof
source list, and by the Altavista search engine. the page: the pages it points to, the pages that point to
it, and the web neighborhood in which it appears. More-
over, spectral filtering circumvents the computationat bot
1 Introduction tlenecks associated with numerical and algebraic methods
such as LSI.
As the amount of information available on-line grows ex- For a set of 26 broad topics benchmarked previously
ponentially, the user’s capacity to digest that informéy [1, 3]} we compare spectral filtering to Altavista, a
tion cannot keep pace [24, 30]. In this paper we addrgrspular web search engine, and to Yahoo!, a taxonomy
the problem of distilling high-quality sources of informaef hand-generated lists of resources on a large number of
tion on broad topics in hyperlinked corpora (such as thepics. To perform this comparison we need a metric that
www). As an example, we seek algorithms that can atlees not require a benchmark corpus (such as TREC [25])
swer the question: “What are the twenty best pages on fbewhich expert relevance judgements are readily avail-
web about History?” There are over five million pages able. We adoptomparitive precisionwhich is akin to
the web today that contain the word history; we seek orthaditional precision except that relevance judgemers ar
twenty, but they must be exemplary. performed by users on the set of pages returned by spec-
The authors of [3] present a system called ARC whidtal filtering, Altavista, and Yahoo!, rather than on the en-
addresses the same problem; our results differ in two tige web (Section 3.1). Itis important to note that the users
spects. First, the algorithms presented here are more gémnot know which system generated which page. With-
eral and, guided by the lessons learned in [3] and subset judgements for a substantial fraction of the entire web,
quently, more effective. Second, the earlier paper come cannot compute an analog to recall; so following [1],
pared ARC to two familiar web engines. Subjects pewe adopt comparitive precision of a fixed number of pages
forming the comparison visited all three sites and maes our metric.
judgements based on quality of resouressl issues of  Under this metric, spectral filtering performs substan-
presentation within each engine. In the current studiglly better than Altavista, and typically outperformsth
we decouple the presentation of a page from its contemnd-constructed resources of Yahoo! as well (Section
Thus, we consider only whether an engine contains lingS). This latter result seems surprising, but spectraiilt
to high-quality resources, and leave other value added has three advantages over Yahoo!. First, an automatic
by the engine (such as brief annotations describing each

Prior studies contained 28 topics. We omitted one quergHiar
*Department of Computer Science, University of Califorfdarke- tecture,” because our evaluators could not be sure whethenaant

ley. This work was done while the author was at IBM Almadend@esh “buildings” or “computers”; and a second query, “Zen Budsthj” be-

Center. cause none of our evaluators for that query completed tHaai@n.




system can consider many more candidate pages than a
manual approach. Second, spectral filtering uses the hu-
man effort implicit in the largely hand-built link-struatel

of thewww, so while the search is fully automatic, it in-
corporates human judgements. And third, the set of 26
topics was generated without reference to any search ep-
gine or site, so while some of the topics correspond ex
actly to Yahoo! nodes, some do not.

aI

2 The spectral filtering method

Kleinberg [13] builds on notions from bibliometry [26]
in developing theHITS technique for searching hyper-
text. Since spectral filtering generalizasrs, we begin Figure 1: Expanding the initial set into a root set.
with a review (Section 2.1) of the technique. Follow-

ing this, we develop spectral filtering (Section 2.2) and

specialize it for the web (Section 2.3). We then ShOWom_classical mat_rix t_heory [12], it follows that with ap-
how this method may be specialized to yield a variegé_opr_'ate r_enormallzatlorhT(resp. @) ‘;‘”“’erges. to the
of application-dependent searching and clustering te incipal eigenvector oHA (resp._ A A). Kleinberg
niques (Section 2.4). Finally, we discuss some com H_rther points out that by analogy wisipectral graph par-
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tational issues (Section 2.5) and describe prior work (S&E%onlng [9]. the non-pnnq_palelgenvectors OMA™ and
tion 2.6). A' A can be used to partition the pages into groups of re-

lated hubs and authorities, respectively.

2.1 Anoverview of the HITS technique o
2.2 Spectral filtering

HiTs performs resource discovery on the web, producing
two distinct but related types of pages in response tdiather than focusing on web pages, in spectral filtering
topic query: hubsandauthorities Hubs and authoritieswe consider arbitrargntities These may be web pages,
exhibit a mutually reinforcing relationship: a good hugocuments, terms, or other structures. Whiles ex-
points to many good authorities, and a good authority#¥its the annotative power latent in hyperlinks, we wish
pointed to by many good huBsThe algorithm begins by to think more generally in terms of “what does entity
constructing aoot setof pages that are likely to be relesay about entity?” To quantify this, we define a numer-
vant to the topic. This construction is arbitrary, but coulgal affinity from s to j denoteds;;. At a high level, our

be performed by creating anitial set of pages by query- method consists of three steps:

ing a traditional search engine using the topic as query,
and then expanding this set to the full root set by including™
all pages that point to, or are pointed to by, a page in the
initial set (Figure 1). The algorithm then associates with
each page a hub-weighti(p) and anauthority-weight
a(p), all initialized to 1. HTs then iteratively updates
these weights as follows: 2

acquisition of the root sét of entities to be analyzed.

In many applications of spectral filtering this process
consists of obtaining an initial set via a Boolean key-
word search and then expanding it to include neigh-
bors (one link distance away);

. approximate calculation of one or more of the eigen-
alp) = Z h(q), h(p) = Z alq). vectors of one or both of two possible similarity ma-

g—p g trices (defined below);

To restate using linear algebra, lét= [a;;] denote the 3. analysis of the computed eigenvector(s) to rank
adjacency matrix of the directed graph of hyperlinks con-  and/or partition the set of entities.

necting the pages in the base st = 1 if page: has a

link to pagej, and 0 otherwisex1Ts may then be viewed We now give the algorithm more formally for the case

as repeatedly iterating the following matrix operations d@if discovery of authoritative sources, which corresponds
the vectorsh anda corresponding to the hub and authotto the analysis of principal eigenvectors. Section 2.4 ex-
ity scores of all pages: tends to applications that require non-principal eigenvec

T tors. Letn = |S| and leta;; be a non-negative real-valued
h < Aa, a Ah (1) affinity of the ordered pair of entitie§, ), so a;; need
2Pages can be both good authorities and good hubs. not equala;;. Typically, eacha;; is a carefully-chosen




function of the terms and (where applicable) links in the
entities; this choice is corpus- and application-depehden
(In HITS, for instanceg;; is a boolean value indicating the
presence of an edge from paige pagej.) Let A = [a;;].

We perform exactly the iterations of (1) to arrive at hub
and authority scores converging to the principal eigen-
vectors (those associated with the largest eigenvalue) of
AT A andAAT, respectively (we call thesémilarity ma-
trices).® Then, we output the entities with the largest en- ®
tries in the principal eigenvector of” A (resp. AAT) as

the top authorities (resp. hubs).

2.3 Spectral filtering for web pages

In this section we adapt spectral filtering to thevw,
identifying and addressing some problems with the simple
affinity function used iHITS. The generation of the root
set follows the description of Section 2.1. legt = 0 if
there is no link from pagéto pagej, and is positive if a
link exists. The value of the affinity is a sum of three com-
ponents: the first is a default value given to every link, the o
second component depends on which, if any, of pael
j fall within the initial set, and the third has a contribution
from each query term. The contribution of a query term
appearing at distana@ewvithin a windowW of terms from
the hyperlinkis proportional td” —:. Query terms within
guotes are treated as atomic units, so the word “car” gen-
erates no contribution for the query “vintage car.”

We also modify the basic algorithm in several ways.
Each modification is motivated by a specific idiosyncrasy
of the web. We describe these modifications now.

e Same-site PagesTo avoid self-promotion or web
sites that confer authority upon themselves, we dis-
card links to pages on the same site. We define two
pages to be on theamewebsite using the follow-
ing heuristic: class A and B IP addresses must match
two most significant octets; class C addresses must
match three most significant octets, and class D ad-
dresses must match all four octets.

a well-known greedy set-cover [15] heuristic as fol-
lows. Once the iteration step has converged, we re-
peat the following process until we have generated
the correct number of hubs: return the best hub, zero
the authority values of all pages pointed to by the
hub, and recompute hub values.

Packing Heuristic: Despite the same-site link re-
moval heuristic, it is possible for instance for an or-
ganization’s homepage, and several children of that
page, to accumulate authority. However, in the final
output we wish to provide the user with as much au-
thoritative substance as possible in a small number of
pages. To achieve this, after each step of the iteration
we “re-pack” the authority of any site, as follows: if
multiple documents within a logical site (as defined
above) have non-zero authority, the authorities of all
but the page with the largest authority are set to zero.

Hub Functions: Many resource compilations (e.g.,
bookmark files) contain pages pertinent to a number
of disjoint topics. This causes such compilations to
become good hubs, which in turn causes irrelevant
links from the same page to become good authori-
ties. To address this problem we note that pointers
to pages on the same topic tend to be clustered to-
gether in resource compilations. We allow each link
in a web page to have its own hub value, so the hub
value of a page is now a function of the particular
link rather than a constant. When computing author-
ity values, the authority of the destination is incre-
mented by the hub value of the link. When recom-
puting hub values, the authority value of the destina-
tion is used to increment the hub value of the source
link, and according to a spreading function, the hub
values of neighboring links. Thus, useful regions of a
large hub page can be identified. The final hub value
of a page is the integral of the hub values of its links.

e Covering Heuristic: The value of a hub page is by Convergence of the spectral filtering computation pre-
definitionin its links rather than its contents. If all théented in Section 2 depends on phrasing the iterated steps

destinations accessible from a particular hub are a@® & matrix multiplication. We must determine whether
accessible from better hubs, we do not need to otfte modifications described above still fit the framework.

put this hub. More generally, we seek to return a siiptice that the same-site and covering heuristics are sim-
of hub pages that together contain as many uniqiy Pre- and post-processing steps, and the hub func-

high-quality links as possible. We therefore appNOn heuristic is a linear transformation that may be ex-
pressed as a matrix multiplication. With these heuristics,
3The matrixA as presented contains affinities between entities of tkiée Still have guaranteed convergence. But packing heuris-
same type. A straightforward generalization gives afisiietween en- tics are non-linear, so we have a nonlinear dynamical sys-
tities of different types, e.g., a term-document matrixtHis case, the em whose convergence is not guaranteed. In practice,
rows of A could correspond to terms, and the columns to documerhs. . .
Although A may not be squared” A4 and AAT are square and sym- NOWEVer, the results converge rapidly in all cases we have

metric. considered.




2.4 Spectral filtering for other domains Finally, we mention a closely-related application that
ses the resulting eigenvectors of similarity matricesafor

erent purpose. Latent Semantic Indexing[10] (LSI) is
imensionality reduction technique based on SVD[12]
t captures the “latent semantic structure” of a corpus.
LSI starts with a term-document matrik, performs an
SVD of A, and uses the subspace spanned by the first
Other corpora We mention in passing that we havdéew (say 100) singular vectors for information retrieval.
successfully applied to a number of corpora besides #eth documents and queries are projected into the “doc-
www. For non-hyperlinked corporaone way we have ument” subspace, where their similarity is measured by,
applied spectral filtering is by defining the affinity funcsay, the inner product between the two projected vectors.
tion as follows: for documents,j let |¢ N j| denote The similarity between LSI and spectral filtering is clear;
the number of terms they have in common. ket = they differ in the way the eigenvectors are used.
|0 j|/|é|, where|| denotes the number of termsiin

We have also applied spectral filtering time-serial 5
corporasuch as the US Patent database and the Supréme
Court rulings. Here the citations only go backwards ihe performance of numerical eigenvector computations
time; the fact that the iterations in spectral filtering gig often a bottleneck, especially in dealing with large cor-
back and forth across (possibly weighted) links is crucigbra. Spectral filtering avoids this bottleneck for three
in extracting structure. If, for instance, one were to onkgasons:
iterate along citations (but never in the reverse diregtion

all the authority would end up in the oldest cases/patentsl. Numerical convergence is not our goal when we wish
to rank/group documents by their scores in eigenvec-

tors. Rather, it is the relative ranks of the eigenvector
entries that matter. Typically, 5 iterations suffice to
stabilize the ranks of hubs and authorities, far fewer
than required for numerical convergence.

Spectral filtering is a technique we have developed for t
web, but it applies more generally to other corpora ar)
to other tasks. We briefly discuss these applications, an
also compare the approach to LSI.

Computational issues

Other applications Spectral partitioning can be used

for clustering and partitioning either a corpus or a se-

lected subset as follows. Having set up the mattias

before, we can also compute the non-principal eigenvec-

tors of AT A. SinceA™ A is real and symmetric, its eigen- 2 The computation is restricted to a relevant subset of

vectors are real. We can view the components of each the corpus.

non-principal eigenvector as assigning to each document

a position on the real line. We examine the values in theé. A is typically very sparse.

eigenvector (in sorted increasing order). At the largest

gap between successive values, we declare a partition th Related prior work

those documents corresponding to values above the gap,

and those documents with values below. This is illustrategperlinks have been explicitly used in information re-

in Figure 2. We may view the entries @’ A as (sym- trieval for ranking (Section 2.6.1) and fostructure dis-

metric) “authority similarities” between documents, ancovery (Section 2.6.2). For most information retrieval

likewise those ofA4AT as “hub similarities”. Intuitively, tasks, ranking provides an ordering of documents based

the eigenvector operations serve to pull together groupsrelevance to a query. In contrast, the ranking induced

of documents that are all close to one another under theour system tries to capture perceived quality with re-

authority (or hub) similarity function. spect to a query. Structure discovery, on the other hand,
Spectral filtering also applies to the problem of collabefers to tasks like clustering and the identification of ag-

orative filtering [11], though we do not provide experigregates in hypertext.

mental data. Consider a setting with two kinds of entities: Each of these two categories can be further divided cor-

documents, and people who access them (the preciseregponding to the following four types of attributes used

tion of “access” may be application-dependent). For peo perform the operationstext, bibliographic citations

son: and documeny, let a;; = 1 if < accesseg and O hyperlinks andhypertext

otherwise ¢;; could be some non-negative function such

as the _fre_quem_:y of access). Now, partitioning using_ tE.%.l Ranking

non-principal eigenvectors would group the people into

subsets with similar document-access patterns, and alegt The bulk of the work and literature in information

group the documents into subsets. More generally, tietrieval has been about the use of only the document’s

“documents” could be products or other preferences dgxt. See for example NIST's TREC[25] proceedings, or

pressed by the people. the excellent texts [18] and [20]. Accordingly, evaluation
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Figure 2: The partitioning process: an eigenvector (topl) #ax@ documents ordered on the line (bottom). A split is
made between 3 and 11.

of retrieval systems has centered around text-only bendffivelevance-ranking schemes for doing query-based in-
marks that emphasize the notiorrefevance which is in  formation retrieval in hypertext. The scheme uses both a
general distinct from quality, making it necessary for usrm-based inverted index and links that can be either bib-
to resort to user studies on hyperlinked corpora for whitibgraphic citations, hyperlinks, or both. Certain aspect
no benchmark for quality is yet standard. of this approach resemble ours. For example the acquisi-
tion and expansion of the root set are virtually identical.

Bibliographic citations This field, known as “biblio- For the actual ranking, howevespreading activations
metrics”, has focused primarily on the scientific literaturus€d. The starting activation values are computed based
Work in this field is focussed on exploiting structure chaRn linguistic similarity to the query. Marchiori [16] com-
acterized by the following mutually dual similarity meaputes a relevance ranking function for hypertext pages that
sures between documents: “bibliographic coupling” (tacorporates a measure of the relevance of the pages to
number of common citations they contain [26]) and “cavhich they point. This measure utilizes any ranking func-
citation” (the frequency with which both appear as citdlon based solely on the textual content of the pages them-
tions in the same document [22].) See the reviews [23]!Ves.

and [14]. Such similarity measures can be coupled with

textual similarity, as in the HyPursuit system [27]. 2.6.2 Structure discovery

. . _ Text The text-only version of structure discovery is sim-
Hyperlinks There are numerous methods in this C%'Iy clustering. See [29] for a review.

egory, including theHiTs algorithm described above,

PageRank [2], WebQuery [6], and the “Topic Distillation” .

work of Bharat and Henzinger [1]. PageRank ranks w&hPliographic citations  Some work has been done on
pages by simulating a random walk on the web, whidhe use of only bibliographic citations to dlscoyer _struc-
can be described by a Markov chain whose steady-st&le€ in @ corpus. For example Small[22] uses citations to
probabilities are then taken as the ranks given to the cBISCOVer clusters, which he refers to as “co-citation net-
responding documents. The entire web (or a large fracti¥RTkS.” A similar study of citation graphs is undertaken
of it) is ranked this way and then the response (i.e., “t¥ Larson [23].

list”) to a Boolean query is sorted by this rank before it is

presented to the user. Note that our ranking is not onlyHgperlinks ~ As discussed, the method BfTs includes
function of the web graph, but also of the specific quesypurely link-based method of structure discovery: find-
for which the ranking is computed. “Connectivity” (totalng clusters using higher-order eigenvectors. Though de-
link count, both in- and out-links) is used in a visualizgsloyed only for hypertext, it could also be used for pure
tion scheme to rank pages in WebQuery. Finally, Bhaitation-based clustering.

and Henzinger identify and address some problems asso-

ciated withH1Ts and with [3], which introduces the ”OtionHypertext Pirolli, Pitkow, and Rao [17] address the
of using the query terms to build the matex problem of identifying aggregates of pages that corre-
spond to a conceptually unified entity. They use (among
Hypertext Many methods for hyperlink- and text-basedther things) link structure, usage paths (taken from serve
relevance ranking are known. Croft and Turtle [7] propo$ags), text, and meta information about pages. Rielin
a scheme for incorporating hypertext links as well as bibk. [4, 5, 19], address a similar issue in the context of pro-
liographic citations into an information retrieval system viding the user with better navigational aids. They intro-
which the relevance of a document to a query is computgualce the notion of index (high out-link count) and refer-
by a Bayesian network. Savoy [21] describes a famiince (high in-link count) nodes, similar to thers notion



of hubs and authorities. Weigs. al. [27] describeHy- which through human involvement collect high-
Pursuit a similar structure-based hypertext navigational quality pages on a number of topics. Unfortunately,
system. due to the growth figures given above these sites can-
not hope to index all pages on the web. If a search
. engine returns a page on a particular topic that is also
3 Experiments on thewww indexed by Yahoo! under that topic, we have a strong
indication that the page is high quality. If, however
We have implemented the algorithm of Section 2.3 in a (as is more likely), Yahoo! does not index the page,

system called Clever, which performs spectral filtering for  \ye have no information about the quality of the page.
the web. This section reports on an experiment compar-

ing Clever to Altavista and Yahoo!. Section 3.1 highlights
some difficulties that arise in applying traditional infor3.2  Our experiment
mation recall metrics to thesww. Section 3.2 describes

our experiments, and Section 3.3 gives results. Section Begause of these difficulties, we choose to evaluate our
includes some discussion. approach using relevance judgements (gathered through

a user study) of a small subset of the web. We there-

31 Perf luation for th fore compare ourselves against the best-known automatic
: erformance evaluation for thewww search engine, Altavista[8], and the best-known human-

Traditionally, retrieval systems are evaluated using tR@Mpiled resource site, Yahoo![31]. We compute the pre-
measures of precision and recall on a large pre-evaluaéion of all three sources on a fixed number of pages
corpus [20]. As there is no standard benchmark for tA€cording to our user-provided relevance judgements and
web that has been rated and classified, we cannot take @gi@pare these results. We refer to this techniquepas-

approach directly. But the situation is worse than this: Paritive precision
More precisely, for each of the 26 queries listed in

e The web currently contains around 300 million docfable 1 we extracted ten pages from each of our three
uments so rating the entire corpus is a daunting tagurces. Altavista and Clever were both given the query
But we cannot label only a small subset becausg it appears in the table (i.e., with quotes, plus-sigr, an
broad-topic queries routinely return a million pageapitalization intact). The same search was entered man-
hits scattered around the web. ually into Yahoo!'s search engine, and of the resulting

- . leaf nodes, the one best matching the query was picked

* E\_/e_n If it were p053|_ble to_ create such a COTPUS. 1§ hand. If the best match contained too few links, the
million new pages arrive daily, 5o th_e corpus could ?cess was repeated to generate additional links. Using
“?ed to evaluate actual search engines foronlyab is procedure we took the top ten pages from Altavista,
window (pr_obably shorter than the time to gather ﬂ}ﬁe top five hubs and five authorities returned by spectral
relevance judgements) before too many new paq‘ﬁtsering, and a random ten pages from the most relevant

arrived. node or nodes of Yahoh! We then interleaved these three

e The composition of a “typical” web document irsets an_d sorted the resulting approximat_ely 30 pages al-
terms of inlinks, outlinks, average size, graphicahabetlcally (there are almost never duplicate pages from
content, layout, function, etc., is dynamic. Even the three sources). We asked each user to rank each of

we are not interested in comparisons that includf@ese pages *bad,” “fair” “good,” or *fantastic” based on
actual search engines, and instead wish to label!@W useful the page would be in learning about the query.
snapshot of the web then compare algorithms on tlfiée took good and fantastic pages to be relevant, and then

snapshot, results for the web of a few years ago mfég,mputed precision in the traditional manner. Since our
not generalize to the web of today. uSers evaluated only the pages returned from our three

sources, but did not know which source returned which
e Existing labeled corpora such as TREC[25] are pipage, we refer to this type of datalsgnd post-factaele-

marily standalone text while we examine algorithmsance judgements.
that rely fundamentally on the hyperlinked nature of The subjective evaluation of relevance was performed
the web. Even other hyperlinked corporatend to coby a set of 37 subjects, yielding 1369 datapoints. The
tain documents of much higher quality than the webubject was free to browse the list of pages at leisure, vis-
So modifying existing labeled corpora for evaluatinging each page as many times as desired, before deciding
web-targeted algorithms is also difficult. on a final quality score.

e The closest apprOXimation_S to “relevance judge- syanhoo! lists pages alphabetically and performs no rankiregice
ments” on today’s web are sites such as Yahoo![31je requirement that we take ten pages at random.



| Query | Yahoo! | AltaVista | Clever |

D”q': +Thailand +tourism | 0.3 0.0 0.2

04 +recycling +cans 0.1 0.1 0.4

035 “Gulf war” 0.5 0.1 0.3

03 “affirmative action” 0.6 0.2 0.6

025 “amusement park” 0.0 0.1 0.4

Di; “classical guitar” 0.3 0.2 0.5

01 “computer vision” 0.7 0.4 0.8

005 “field hockey” 0.1 0.1 0.2

0 “graphic design” 0.2 0.1 0.2

vahoo Altavista Clever “lyme disease” 0.6 0.1 0.6

“mutual funds” 0.7 0.4 0.5

Figure 3: Average precision over all queries of the tlnpa‘l‘rallel a_rchlftec:t,ure 0.2 0.2 0.3

documents returned by each system rock chmbmg 0.6 0.1 0.8

“stamp collecting” 0.2 0.3 0.5

“table tennis” 0.6 0.1 0.6

3.3 Results “vintage car” 0.1 0.2 0.2

. ) HIV 0.4 0.3 0.8

Ave_rgge precision. Figure 3 shows the average co alcoholism 02 02 04

paritive precision of each search engine over the set-of bicycling 0.4 0.0 0.2

26 queries; Table 1 then shows these precision valuesifor blues 05 01 06

each topié Clever outperformed both Yahoo! and Al cheese 0.6 0'2 0.6
tavista under this metric. While the favorable compar g : : :

ison to Altavista was expected, the advantage over Ya cruises 0.5 0.4 0.5

hoo! was surprising. An analysis of the standard devia- gardening 05 01 04

tion across queries shows that in fact the results for Cleyer shakespeare 0.6 01 0.6

were slightly more tightly clustered than for Yahoo! (stan- sushi i 0.4 0.2 0.7

dard deviation of19 versus.21), and that results for Al- telecommuting 04 0.2 08

tavista were consistently lower than for the other systems

(standard deviation ofl0). Similarly, Figure 4 consid-
ers the fraction of queries on which each search eng
performed best. 1181% of all topics, Clever was either
the best in terms of precision or tied for first place wit
Yahoo!

Page Rankings. The previous figures consider the ave!
age comparitive precision across all pages returned b
particular engine. We now consider the rank assigned t
page by each engine. Figure 5 plots the average precis
of the top: pages for each engine, for= 1...10. For
this purpose, the ranking function that we use for Clev
interleaves the hubs and authorities starting with the b
hub.

One possible concern is that a large Yahoo! no
may contain many good pages and some excellent or
Choosing only ten pages at random from such a node n
penalize Yahoo! for gathering more information on tr
topic. However, almost all our Yahoo! nodes containe
fewer than 30 pages, and the correlation of precision
Yahoo! node size is minimal, onk0.09. This indicates

ine

Table 1: Comparitive precision by topic.

Yahoo
Tied (+C) 19%
1% Attavista
0%

Clever
S0%

SNote that, while the authors of [1] report precision valuesfsim- Figure 4: Percentage of topics for which each system had
ilar system, private communication from the authors suggasr preci- the highest number of high-quality relevant documents.

sion figures are not directly comparable with theirs.



| Measure | Yahoo! | Altavista | Clever |

08

Precision .38 18 48
05 Mt N ————s Fantastic Fractiof .13 .04 15
oa L Linear Measure 42 27 .50
—r—Clever
03 ——ahoal Table 2: Alternate Overall Quality Ratings, by Search En-
e ——atavista| | 9INE.
0.2 e
o1 3.4 Discussion
0

It remains unclear how to judge the response set of a
search engine as a whole, rather than page-by-page. Both
the covering and the packing heuristics may reject pages
Figure 5: Precision as a function of the rank of pages.that are individually highly r_ated in favor of pages that
contribute to the overall quality of the response set. Hence
we believe that the quality of our result set as a collection

] of pages will be better than the average precision metric

. . indicates.
cooo o 4 Conclusions
o 0.5 +* +

We have shown that spectral filtering is an effective tech-
nique for analyzing text and hypertext for searching, parti

. tioning, and estimating a notion of document quality. This
technique both is general and flexible: by appropriately
modifying the notions of entities and links, one can ex-
tract interesting structure from a wide variety of hyper-
linked and non-hyperlinked corpora. We have a prototype
implementation that is simple and fast; the only perfor-
mance bottleneck is the inherent delay of scanning and
indexing a large corpus.

0 0s 1
Authority Precision

Figure 6: Scatter of hub and authority scores.

that the concern is not serious.

Acknowledgment

Hubs and Authorities. The precision scores of hubs ) ) ]
and authorities show only a mild correlation). Fig- We are grateful to Jon Kleinberg for numerous discussions

ure 6 shows the scatter plot by topic; in some cases h@hsthe algorithms and experiments in the Clever system.
dominate, and in others authorities dominate, suggestW& thank our test subjects for performing the evaluations
that users find value in both types of pages. Overdfescribed in Section 3.2, and Yael Ravin for her assistance
Clever is better at identifying hubs than authorities — i acquiring some experimental data.

72% of the queries, the comparitive precision of the hubs

was at least as high as the authorities. References

. . [1] K. Bharat and M.R. Henzinger. Improved Algorithms for
Other overall comparative measures. We also give Topic Distillation in a Hyperlinked Environment. To ap-

two alternate measures of overall quality. The first mea- pear Proceedings of ACM SIGIR.998.

sure, “fantastic fraction,” is the fraction of pages regan 2] S.BrinandL. Page, The Anatomy of a Large-Scale Hyper-
that are rated as “fantastic” (rather than either “good” of * texyal Web Search Engine. To appear in Breceedings
“fantastic” in our original measure). The second, “linear  of the 7th World-wide web conference (WWWIB98.
measure,” weights a “bad” pagefata “fair” page at33, a 3] S.Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Ragha

“good” page at66 and a “fantastic” page at The results van and S. Rajagopalan. “Automatic Resource Compi-
for these measures are given in Table 2. Clever performs |ation by Analyzing Hyperlink Structure and Associated

better than all other systems under all measures, although Text”, To appear in th@roceedings of the 7th World-wide
Yahoo! finds roughly as many “fantastic” pages. web conference (WWW7)998.



[4] Rodrigo A. Botafogo and Ben Shneiderman, “ldentifying21] Jaques Savoy, “Ranking schemes in hybrid boolean sys-

(5]

(6]

[7]

(8]

aggregates in hypertext structureBtoceedings of ACM
Hypertext'91 pp. 63-74, 1991

R. Botafogo, E. Rivlin, B. Shneiderman, “Structural &na[22]
ysis of hypertext: Identifying hierarchies and useful met-
rics,” ACM Trans. Inf. Sys10(1992), pp. 142-180.

J. Carriere, R. Kazman, “WebQuery: Searching and vis[23]
alizing the Web through connectivityProc. 6th Interna-
tional World Wide Web ConferencE97.

W. Bruce Croft and Howard Turtle, “A retrieval model for
incorporating hypertext links"Proceedings of ACM Hy- [24]
pertext'89 pp. 213-224, 1989

Digital Equipment CorporationAltaVista search engine [25]
altavista.digital.com .

[9] W.E. Donath, A.J. Hoffman, “Algorithms for partitiongn

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

of graphs and computer logic based on eigenvectors of
connections matriceslBM Technical Disclosure Bulletjn
15(1972).

S. Deerwester, S. Dumais, T. Landauer, G. Furnas, R.
Harshman, “Indexing by latent semantic analysi3,”
American Soc. Info. S¢i41(1990).

D. Goldberg, D. Nichols, B.M. Oki, and D. Terry. Using
collaborative filtering to weave an information tapestry.
Communications of the ACN5:12, pp. 51-60, 1992.

G. Golub, C.F. Van LoanMatrix Computations Johns
Hopkins University Press, 1989.

J. Kleinberg, “Authoritative sources in a hyperlinkeizg]
environment,”"Proc. ACM-SIAM Symposium on Discret
Algorithms 1998. Also appears as IBM Research Report
RJ 10076(91892) May 1997, and as

W, cs. cor nel | . edu/ home/ ki ei nber/ aut h. ps. [30]

[26]

[27]

(28]

Mengxiong Liu, “Progress in documentation the complex
ities of citation practice: a review of citation studies”, (31]
Documentatiopd9(4), pp.370-408, 1993

L. Lovasz. On the ratio of the optimal integral and frac
tional covers. Discrete Mathematics 13, 383—-390, 1975

Massimo Marchiori, “The Quest for Correct
Information on the Web: Hyper Search En-
gines”, The 6th International World Wide Web
Conference (WWWS6) 1997. Also available at

atl ant a. cs. nchu. edu. t w ww/ PAPER222. ht ml .

P. Pirolli, J. Pitkow, R. Rao, “Silk from a sow’s ear:
Extracting usable structures from the WePfoc. ACM
SIGCHI Conference on Human Factors in Computing
1996.

C.J. van Rijsbergerinformation Retrieval Butterworths,
1979. Also at
dcs. gl asgow. ac. uk/ Kei t h/ Pref ace. htm .

E. Rivlin, R. Botafogo, B. Shneiderman, “Navigating in
hyperspace: designing a structure-based toolbGrjn-
munications of the ACIVB7(2), 1994, pp. 87-96.

G. Salton. Automatic Text ProcessingAddison-Wesley,
Reading, MA, 1989.

tems: a new approach?, Am. Soc. Information Sci8(3),
pp.235-253, 1997

H. Small, “Co-citation in the scientific literature: Aew
measure of the relationship between two documets,”
American Soc. Info. S¢i24(1973), pp. 265-269.

Ray R. Larson, “Bibliometrics of the World Wide Web: An
Exploratory Analysis of the Intellectual Structure of Cy-
berspace.Proceedings of the 1996 Annual ASIS Meeting
Baltimore.

D. Shenk. Data Smog. New York: Harper and Collins,
1997.

TREC - Text REtrieval Conference, co-sponsored by the
National Institute of Standards & Technology (NIST) and
the Information Technology Office of the Defense Ad-
vanced Research Projects Agency (DARPA) as part of the
TIPSTER Text Programi.r ec. ni st. gov/

Bella Hass Weinberg, “Bibliographic Coupling: A Re-
view”, Information Storage and Retrievalol.10, pp. 189-
196, 1974

R. Weiss, B. Velez, M. Sheldon, C. Nemprempre, P. Szi-
lagyi, D.K. Gifford, “HyPursuit: A Hierarchical Network
Search Engine that Exploits Content-Link Hypertext Clus-
tering,” Proceedings of the Seventh ACM Conference on
Hypertext 1996.

H.D. White, K.W. McCain, “Bibliometrics,” inAnn. Rev.
Info. Sci. and Technologflsevier, 1989, pp. 119-186.

Peter Willet, “Recenttrends in hierarchical docunmuas-
tering: a critical review”, Information Processing and
Managemeniol.24, No.5, pp. 577-597, 1988

R.S. Wurman. Information Anxiety. New York: Double-
day, 1989.

Yahoo! Corp.Yahoo! ww. yahoo. com



