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ABSTRACT
In this paper we consider the problem of estimating the difficulty
of parking at a particular time and place; this problem is a critical
sub-component for any system providing parking assistance to
users. We describe an approach to this problem that is currently in
production in Google Maps, providing inferences in cities across
the world. We present a wide range of features intended to capture
different aspects of parking difficulty and study their effectiveness
both alone and in combination. We also evaluate various model
architectures for the prediction problem. Finally, we present chal-
lenges faced in estimating parking difficulty in different regions of
the world, and the approaches we have taken to address them.
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1 INTRODUCTION
Americans spend an average of 17 hours per year searching for park-
ing, resulting in an annual cost of $345 per driver in wasted time,
fuel, and emissions [18]. This wasted time tends to be particularly
stressful, so its impact on well-being may be disproportionate. Park-
ing woes are not limited to travel or leisure activities: we conducted
a survey of the US population using a user survey application and
found that 29% of respondents who commute by car have parking
problems even at their home or work.

Google has a long-standing goal to help people navigate the
roads easily and efficiently, and this includes providing support for
the difficult problem of parking. Any such solution must take into
account the nature of parking at the destination of a journey. If
cheap street parking is abundant at the destination, then directing
the user to more expensive and remote parking in a garage is a poor
experience. On the other hand, it is equally derelict to abandon the
user at the front door of a restaurant in a neighborhood with no
available parking. To distinguish between these cases, the estima-
tion of difficulty of parking in a particular context (both location
and time) is a critical capability. This paper therefore studies the
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Figure 1: Parking difficulty shown in Google Maps.

problem of large-scale automated parking difficulty estimation, and
describes a system currently in use at Google to solve this problem.
Figure 1 shows an example from Google Maps of the inferences
produced by this system.

Providing this feature required addressing significant challenges:
(i) Parking availability is highly variable from one time and place

to another.
(ii) Precise data about parking availability by time and place

is limited. Even in areas with internet-connected parking meters
providing information on availability, the data does not account for
those who park illegally, park with a permit, or depart early from
still-paid meters.

(iii) Parking behavior varies from one city to another. It is a priori
not clear whether a system built to estimate parking difficulty in
one place will work well in another.

To address these issues, we developed a system to estimate park-
ing difficulty. This system is trained using crowd-sourced data gath-
ered by surveying Google Maps users about the difficulty of parking
at various times and places. Based on this ground truth, we develop
an ML-based system to predict this difficulty. Much as Google Maps
uses aggregate statistics to estimate the speed of traffic, we use sim-
ilar aggregate statistics to provide signals on parking difficulty that
are trained against our survey-based ground truth. The aggregate
statistics we use cover a wide range of different indicators of park-
ing difficulty, in order to train a robust model that is effective across
different parking environments. We consider features such as the
average distance people park from their destination, the dispersion
of parking locations for a particular destination, and the average
amount of time spent circling the destination. Overall we consider
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approximately 300 such features in our models. As the underly-
ing location trajectory data used to build our features is noisy, the
formulation of a feature space that is predictive, and generalizes
well across different parking situations around the world, is the
primary contribution of our work. We also describe models based
on logistic regression and deep feed-forward networks, and study
the generalization of our models across different cities spanning
multiple continents.

We show that it is possible to develop an effective solution to
parking difficulty estimation. The deployment of such a system
provides value to users in planning their parking, and perhaps not
surprisingly, it also has impact beyond the mechanics of parking
itself. In a live experiment comparing the system with and without
parking difficulty information, we saw a significant increase in
clicks on the transit travel mode button, indicating that users with
additional knowledge of parking difficulty were more likely to
consider public transit options as an alternative to driving.

The primary contributions of this paper are:
(i) Design and evaluation of a wide range of features that can

be produced from location trajectories, and that are effective in
measuring parking difficulty.

(ii) Design, implementation, and different modeling approaches
to this problem by using aggregates of these features, trained against
survey-based ground truth.

(iii) Large-scale quantitative study using a dataset that covers a
wide variety of places, generalization to new cities, and importance
of different features.

The paper is organized as follows. We survey related work in Sec-
tion 2, and describe the problem and our approach in Section 3. We
describe our data in Section 4, features in Section 5, and modeling
in Section 6. In Section 7, we evaluate the relative power of different
features and modeling approaches, and the ability of our system to
generalize across cities. Section 8 gives concluding remarks.

2 RELATEDWORK
2.1 Parking sensors
A significant body of work exists around the detection and anal-
ysis of data on whether individual parking spots are occupied at
a point in time. One line of work covers purpose-built sensors de-
ployed in parking lots or garages [7, 30, 36, 46]. Another line of
work makes use of ultrasonic sensors already available in some
passenger vehicles to detect the state of occupancy of parking
spots adjacent to the vehicle [4, 8, 25, 44]. Yet another line of work
employs techniques from image processing to determine the occu-
pancy of parking spaces based on image data collected from various
sources [5, 9, 12, 16, 17, 31, 34, 35, 39]. Yet other solutions have been
proposed based on crowd-sourcing data from smartphones [40],
GPS [26], and payments [32, 41, 42].

In comparison to these approaches, we instead make use of
historical geolocation data and anonymized surveys, which are
both scalable and affordable.

2.2 Parking occupancy modeling
From a methodological perspective, various ML/statistical models
for predicting parking occupancy have been proposed recently.
These techniques cover a broad range of approaches including

clustering [28, 32, 33], SVR [44], time-series analysis [22], Markov
chains [21], vector autoregressive models [27], neural networks [1,
19, 29, 36, 41], and representation learning [45]. Particularly, Alajali
et al. [1] propose a Bayesian regularized neural network that takes
into account historical data, traffic flow, and weather conditions. Du-
Parking [29] employs DNN and LSTM models to predict real-time
parking availability, based on geolocation data from Baidu map and
sensor data from parking lots. Yang et al. [41] incorporate both CNN
and RNN/LSTM for modeling spatiotemporal correlations, based
on both real-time and historical data from multiple data sources
including occupancy, conditions of traffic, road, and weather, as
well as network topology. These learning approaches rely in part
on parking lot sensor or parking meter data.

2.3 Route planning
In addition to parking occupancy prediction, parking search has
also been studied in the context of routing algorithms. ParkAs-
sistant [11] aims to minimize an overall measure of parking cost
that incorporates parking price and time, traffic rules, driver pref-
erence, and other factors. PSR [15] adapts the A* algorithm in a
road network simulation environment. A number of agent-based
models [2, 10, 24, 37, 38] perform simulations of driver behavior and
parking supply. Other recent parking simulation works [6, 14, 43]
have studied key aspects of driver behavior under the uncertainty
that arises due to missing information while attempting to park.
These simulations are often compute-intensive and require empiri-
cal calibrations of driver behavior, often specific to an area. Finally,
some recent work proposes other low-cost data sources such as
so-called floating car data based on mobile network accesses from
devices in vehicles [13, 23].

3 FORMULATION AND OVERVIEW
Parking difficulty varies a lot by time and place. Our primary goal
in this work is to model this variation in order to give predictions
to users about whether they will have difficulty parking.
Goal. Obtain a function f that, given a destination location ℓ and
time t , produces a prediction f (ℓ, t) ∈ {easy, medium, limited} of
whether there will be difficulty parking. For example,

f (ℓ = 37 Main Street, t = 3:12pm on January 2) = limited,

would be a prediction that parking is likely to be difficult at that
time and place.

Tomake the problem concrete and amenable to standardmachine
learning approaches, we first partition the possible inputs ℓ, t into
“spatiotemporal buckets” (Section 4.2). We compute a feature vector
x for each bucket (Section 5). What remains is to learn a model M
to predict parking difficulty M(x) based on those features. Putting
it all together, these are the steps we use to compute f (ℓ, t):
Computing the parking difficulty prediction f (ℓ, t).

(1) Find the spatiotemporal bucket B that contains (ℓ, t).
(2) Compute the feature vector xB for that bucket.
(3) Apply the modelM , producing f (ℓ, t) = M(xB ).
We extract the features for each spatiotemporal bucket from

user location data for users who have opted into Google’s Location
History service. We segment users’ data to produce trajectories
where the user arrived at a place by driving and parking a car. We
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then compute features for each such trajectory that reflect difficulty
in parking, like longer time to park, long walks to the destination
or circling around to find parking (Sections 5.1 and 5.2). We then
aggregate those features across all trajectories for a place and time,
and add other aggregate statistics such as dispersion of parking
locations for a particular destination (Section 5.3). We use this
combined set of features to train a model (Section 6) to predict
survey answers we collect (Section 4.3) to provide ground truth for
subjective parking difficulty.

4 DATA
In this section we describe the data we use to build and evaluate the
parking difficulty model. We aggregated user location data from
Location History-enabled users to find parking difficulty for specific
regions on Earth by dividing Earth’s surface into discrete regions.
We also collected ground truth data through anonymized surveys.
We now describe each of these data sources in detail.

4.1 Travel trajectory data
In order to understand the difficulty of parking, it is important
to analyze users’ spatiotemporal trajectories to record total time,
distance from parking location to destination, and various other
features. From user location data, we used inferred travel modes
(driving, walking, train, etc.) and destinations [20], as shown in
Google Maps Timeline. Parking location was estimated to be near
the end of the last driving location before destination arrival.

These detected parking locations may be individually noisy, so
the models we describe operate instead on aggregates of features,
generated across multiple trajectories.

4.2 Defining spatiotemporal buckets
As we discussed in Section 3, we compute parking difficulty for a
spatiotemporal bucket B. The spatial boundaries of a bucket are
determined based on Google’s open-source S2 Geometry Library
(s2geometry.io), which decomposes the entire surface of the Earth
into hierarchical S2 cells. The top level of the hierarchy is obtained
by projecting the points of the sphere (i.e., Earth) into a cube, giving
rise to six S2 cells on Earth’s surface. The lower levels are obtained
by subdividing each cell into four child cells. This continues recur-
sively a total of 30 times. For example, Figure 2 shows two of the
six-face cells, one of which has been subdivided several times:

Figure 2: S2 cell hierarchy. From http://s2geometry.io/.

Each S2 cell is a quadrilateral bounded by four geodesics and has
a hierarchy level, ranging from 0 to 30. We used S2 cells at level 15,
which represents an edge length of about 250 meters and an average
area of about 80,000 square meters. This roughly corresponds to a
large city block, which is the level of granularity that is desirable
for parking difficulty estimation.

For the temporal boundaries of a spatiotemporal bucket B, we
use the 168 distinct hours of the week as the temporal regions. Thus,
a bucket B is defined by an hour of the week and a level 15 S2 cell.

4.3 Ground truth
To train and evaluate our models, we need labeled data indicating
if parking is difficult in a variety of spatiotemporal situations. We
gathered these labels using user surveys: we asked individuals at a
diverse set of locations and times to answer a yes-or-no question
about the current difficulty of finding parking. To produce our
dataset, we joined these answers with model features covering the
same times and places. The features are described in Section 5.

Our first survey asked “Is it hard to find parking near here right
now?” (The surveys described here include translations to other
languages.) We learned that answers to subjective questions like
this produce inconsistent results—for the same parking scenario,
different people give different answers.

We then asked “Does it currently take more than M minutes to
find parking and walk to this place?”, for different choices of M.
We found that for the right choice of M, this gave more consistent
answers, enabling us to crowd-source a high-quality set of ground
truth data with over 100K responses.

4.3.1 Inter-rater agreement. To assess the quality of our ground
truth, we first grouped the survey responses by time and location
into spatiotemporal buckets, as described in Section 4.2, since our
feature aggregation prevents our model from making any distinc-
tions within the same aggregation bucket. We then computed the
inter-rater agreement using joint probability of agreement within
each spatiotemporal bucket. Specifically, we measured how often
two responses agree when they fall in the same spatiotemporal
bucket. For each bucket with a set S of answers, |S | > 1, we com-
puted agreement, and averaged the agreement over all the buckets
within a geographic region (typically the metropolitan area around
a city) to get the overall inter-rater agreement.

Our analysis shows that the inter-rater agreement in the ground
truth can vary from 50%–80%. It is affected by a variety of reasons:

(i) Naturally users will have different parking experiences. For
example, one user may get lucky and find a spot right away, another
might need to hunt for 15 minutes, and a third might simply decide
to pay to use a garage.

(ii) We bucket by hour of week, so if labels show that difficulty
differs this Tuesday at 2pm from last Tuesday at 2pm, we put those
in the same bucket and it counts against inter-rater agreement.
Similarly, our spatial bucketing might group together places with
different parking situations, which can happen at S2 cell level 15.

(iii) Some survey respondents may provide unreliable data. For
example, people who did not drive and do not understand the
parking situation may still try to provide a response.

As the agreement figures indicate, even a perfect model will still
disagree in some cases with the experiences of an individual parker.
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We evaluate model accuracy against average difficulty reported by
a set of raters, understanding that this average difficulty represents
a distribution of individual experiences with nontrivial variance.

Figure 3 shows the relationship between inter-rater agreement
and overall parking difficulty.When it is harder to park, the variance
of answers is higher because of a higher difference in individual
parking experiences, which in turn results in lower inter-rater
agreement as shown in the figure.

Figure 3: Comparison of parking difficulty and inter-rater
agreement. Each point represents one geographic region.

5 FEATURES
In this section we describe the various classes of features we derive
from the travel trajectory data described in Section 4.1. We place
each trajectory into a spatiotemporal bucket based on the level 15
S2 cell containing the destination, and the hour of week containing
the start time of the visit. For each trajectory-level feature, and for
each bucket, we then aggregate the value of that feature across
all trajectories in the bucket. We use five different aggregation
functions: count, 10th percentile, median, mean, and 90th percentile.
This allows us to convert any number of trajectory-level features
for a bucket into five final aggregate bucket-level features.

Sections 5.1 and 5.2 describe the per-trajectory features that are
aggregated in this manner. Section 5.3 describes additional features
that use custom forms of aggregation across trajectories.

5.1 Trajectory-based time and distance features
Based on user trajectory data, we compute features that represent
the properties of a single trajectory. These features are aggregated
as described above before being passed to our model. We now
describe the features.

5.1.1 Parking distance. This is defined as the distance from parking
location to the destination; as we will see later, this turns out to
be one of the most important features. The intuition behind this
feature is immediate: if it is easy to find parking for the destination
(e.g., street parking before the destination is typically empty or the
destination has a customer-only parking lot that is typically empty),
then this feature will have a low value. Conversely, if the distance
between the destination and the parking location is large, then it is
some indication of parking difficulty.

Figure 4: Mock trajectory that demonstrates arrival devia-
tion. See Section 5.1.4. (Not derived from user data.)

5.1.2 Vicinity and destination times. These features compare the
time when the user first approaches the destination to the time
when they park or arrive at the destination. If the user must circle
or drive around for a long time, we expect their values to be higher.

We define multiple variants of these features based on different
notions of “first approach to the destination.” We require a few
definitions for this and subsequent features. First, let park_time
be the time when the user parks the vehicle and let arrival_time
be the time when the user reaches the destination. Let R be a set
of reference points along the trajectory, such as the first time the
vehicle approaches within 500m, or 1000m, etc. Let timer be the
time when the vehicle reaches reference point r .

Then for each r ∈ R:

vicinity_to_park_timer = park_time − timer ,

vicinity_to_destination_timer = arrival_time − timer ,

where the former captures the time spent between the reference
point and parking, and the latter captures the time spent between
the reference point and the arrival at the destination.

5.1.3 Deviation times. To estimate time spent in searching for
parking, we aggregate the difference between when a user should
have arrived at a destination if they simply drove to its access point
(say, the front door), versus when they actually arrived, taking into
account circling, parking, and walking. If many users show a large
gap between these two times, we expect this to be a useful signal
that parking is difficult. So we compute two sets of features.
Driving and arrival deviation. This feature captures the addi-
tional driving time caused by parking. We use Google Maps to per-
form a thought experiment: what if the user had driven from refer-
ence point r straight to the parking location?We define drive_estimater
as the estimated time from r to the parking location, and then define
driving deviation as the additional time needed to find the parking
space, beyond what is required simply to drive there:

driving_deviationr = vicinity_to_park_timer − drive_estimater .

Arrival deviation. Similarly, we consider the time when the user
actually arrived at the destination (after circling, parking, and then
walking) compared to the time it would have taken simply to drive
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to the front door; this is intended to capture the total marginal time
introduced by the need to park:

arrival_deviationr = vicinity_to_destination_timer − drive_estimater .

Figure 5 shows weekly variation for deviation features for an
example S2 cell in San Francisco.

5.1.4 An example. Figure 4 demonstrates a mock trajectory that
approaches Union Square, San Francisco. With r as a reference
point, based on traffic, Google Maps estimates that driving from
r to the destination will require 2 minutes. However the driver
circles for 15 minutes and finally parks in Chinatown followed by
a 5 minute walk. In the figure, r is the reference point r , D is the
destination Union Square, and P is the parking location. We have:

• timer = 12:00
• park_time = 12:15
• destination_arrival_time = 12:20
• vicinity_to_park_timer = 12:15 − 12:00 = 15min
• vicinity_to_destination_timer = 12:20 − 12:00 = 20min
• driving_deviationr = 15min − 2min = 13min
• arrival_deviationr = 20min − 2min = 18min

Figure 5: Feature variation throughout the week for an S2
cell in San Francisco.

5.2 Circling features
The features described in this section combat specific issues we saw
in early versions of our system, particularly due to taxis and buses.

Taxi and rideshare dropoffs are very common in urban areas.
In those cases, deviation times and distance features may be mis-
leading, especially for destinations with a large fraction of arrivals
via rideshare. In such cases, we see a large number of users drive
to the front door of the destination and exit their vehicle. If we
mistakenly believe these users are parking immediately in front of
the destination, we may conclude that parking is easy. This bias
is particularly damaging as difficult destinations will often draw
larger fractions of rideshare visitors.

Buses may result in both false positives and false negatives. For
cities with effective public transit systems, we may see signs of
“easy” parking for destinations near bus stops, and signs of “hard”
parking for destinations that are a longer walk from the closest bus
stop. Figure 6 shows an example of a mock bus trajectory.

Figure 6: Mock trajectory that demonstrates a bus. (Not de-
rived from user data.)

Figure 7: Mock trajectory that demonstrates a circling pat-
tern (Not derived from user data.)

A strong pattern that reflects some difficulty in finding park-
ing is circling: if we see a user driving closer and further, looping
around the destination, then this trajectory might indicate some
parking difficulty. Based on this, we define a set of features for
circling behavior, capturing a higher-confidence set of difficult-to-
park examples without attempting to distinguish easy parking from
other ways to arrive at the front door. Consider a simple model in
which the driver always drives directly towards the destination,
and starts looking around for parking spots once they arrive. Let
Y be the closest location to the destination before the driver starts
looking for a parking spot; a proxy for Y is the first location report
that shows an increase in distance to destination. We define cir-
cling_time as the time spent between Y and the parking location P ,
and circling_distance as the driving distance between Y and P .

Figure 7 shows an example. At 12:02pm, Y is the closest point to
D when we start seeing the distance increasing. Then, circling_time
= 10min, and circling_distance = 360m + 300m + 600m = 1260m.

5.2.1 Monotonicity. This feature captures a different aspect of
circling. Given a sequence of location reports before arriving at a
destination, in an idealized and easy to park situation, we expect the
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Figure 8: Mock trajectory that demonstrates monotonicity
feature calculation. (Not derived from user data.)

sequence to be monotone non-increasing in terms of its distance to
the destination.We capture this by definingmonotonicity for a given
sequence to be the ℓ2 distance to the closest monotone sequence;
we attach increasing weights to each point in the sequence closer
to the destination. We can compute the monotonicity feature by
using well-known algorithms for isotonic regression (e.g., see [3]).

Figure 8 shows an example in which there are six location re-
ports before parking. The sequence of distances to the destination
is (480, 400, 430, 700, 580, 100, 0) say with weights (1/7, 1/6, 1/5,
1/4, 1/3, 1/2, 1/1). The best monotone fit to the given sequence is
(539,539,539,539,539,100,0), with an ℓ2 error of 114.

5.3 Ambient features
Unlike the per-trajectory features, ambient features are computed
using a custom aggregation of information from the trajectories in
a spatiotemporal bucket. We describe two such classes of features.

5.3.1 Geo dispersion. Consider the trajectories with a destination
in a particular spatiotemporal bucket B. If this bucket has easy
parking, we expect that most vehicles would park nearby, ideally
even in the same S2 cell. On the other hand, if the parking situa-
tion is hard, vehicles would conceivably park far away from the
destination and in more diverse locations. Let C1, . . . ,Cn be all the
S2 cells that contain at least one parking location of a trajectory in
B. Let ci be the number of trajectories in B parking in Ci . Finally,
let pi = ci/

∑
j c j be the probability that a trajectory in B parks

in Ci . We may now define two features capturing the geographic
dispersion of parking locations for B.

Collision. This is the probability of two trajectories visiting the
same destination parked in the same Ci .

collision(B) =
n∑
i=1

p2i .

Entropy. This is the lack of predictability of parking locations for
the destination.

entropy(B) =
n∑
i=1

pi log(1/pi ).

5.3.2 Relative busyness. To capture times when an area is unusu-
ally busy, we include relative busyness features. We start by measur-
ing the number nℓ,t of users for a spatiotemporal bucket B = (ℓ, t)
defined by an S2 cell at location ℓ and an hour of week t . We then
marginalize over time and compute the maximum, 90th, and 75th
percentiles nmax

ℓ
, n90%

ℓ
, and n75%

ℓ
for every ℓ, and use these statistics

to normalize the features across various t . This produces three fea-
tures at each location ℓ and time t : rel_busyness_max = nℓ,t /n

max
ℓ

,
rel_busyness_90th = nℓ,t /n

90%
ℓ

, and rel_busyness_75th = nℓ,t /n
75%
ℓ

.

6 LEARNING MODELS
For a fixed spatiotemporal bucket, we generate all the aggregated
features (Section 5) and likewise generate the associated ground
truth (Section 4.3); we treat this as a single training example.

In Google Maps, parking difficulty is displayed using 3 levels:
easy, medium, and limited. Our model must therefore output one
of these labels for each spatiotemporal bucket. Our ground truth
data, however, is binary: either easy or limited. To optimize the
model, we must determine how much the system is penalized for
each type of mistake: how damaging is it, for instance, to report
that parking is medium when in fact it is limited, compared to
reporting limited when it is easy, and so on.

Based on discussion with domain experts, we define a 2x3 reward
matrix to encode these values (Section 6.1). The loss function used
in training is then derived from this matrix. Sections 6.3 and 6.4
describe specific models trained within this framework.

6.1 Reward matrix
The reward matrix R we use is the following.

Predicted
R easy medium limited

Actual easy 1 -0.7 -3
limited -3 -0.7 1

Table 1: Reward matrix to convert from two-class ground
truth to three-class predictions.

This reward matrix gives high penalty for incorrect predictions
and allows the model to predict mediumwhen it is unsure. Note that
for balanced ground truth, the expected reward of always predicting
medium (-0.7) is slightly higher than the expected reward of always
predicting either easy or limited (-1.0). Hence, the model should
employ medium until its level of certainty exceeds this difference.

6.2 Loss function
To optimize for overall reward, we define a loss function based on
this matrix. The loss assumes that the model predicts a distribu-
tion over the three output labels, and is defined as the expected
reward under the predicted distribution, given the actual label. For
a training instance x with ground truth label y:

loss(x ,y | θ ) = −
∑

ŷ∈{easy,medium,limited}

pθ (ŷ | x) · R(ŷ,y),
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where pθ (ŷ |x) is the probability the model assigns to output label ŷ
given features x and learned parameters θ , and R(ŷ,y) is the reward
for predicting output label ŷ for ground truth label y.

6.3 Single-layer regression
We trained a standard single-layer multiclass regression ML model
over the ground truth data and reward matrix. The objective is to
minimize the loss function defined in Section 6.2. The simplicity
of this model gives it a few advantages. First, its behavior is well
understood, and it tends to be resilient to noise in the training data;
this is a useful property when the data comes from crowd-sourcing
a complicated response variable like difficulty of parking. Second,
it makes the model interpretable and allows us to measure the
contribution of each feature, as detailed in Sections 7.3 and 7.4.

6.4 Feedforward deep neural network model
We have also explored an alternate feedforward neural network
model. With the same set of features used by the model of Sec-
tion 6.3, we constructed a DNN model that has two hidden layers
(20 and 10 hidden units, respectively), and applied the ReLU activa-
tion function to each layer. We used the loss defined in Section 6.2
and optimized using AdaGrad.

7 EVALUATION AND RESULTS
In this section we evaluate our models. Our goal is to understand
the performance of our features and model architectures, and to
study geographical generalization. Hence, we will report results for
a model trained for the SF Bay area in Northern California, and we
will evaluate this model’s performance in other geographies, and
also relative to ablated models trained on the same data.

7.1 Examples of model output
With our model in hand, we are able to generate an estimate of the
difficulty of parking at any place and time. Figure 9 gives examples
for the level 15 S2 cells of downtownOakland, CA for a few different
times of the week. On Mondays, parking is more difficult during the
morning commute than at night. On Saturdays, parking is relatively
easy in the morning but becomes hard at night.

7.2 Balanced normalized rewards (BNR)
Parking difficulty varies by city. Some cities are harder to park in
than the others, and this results in a different distribution of answers
corresponding to easy and limited in our survey responses. To
compare model performance over different cities, which might have
different label distributions, we report the rewards attained by our
system (as per Table 1) after re-balancing the ground truth data
distribution to an equal mass of easy and limited instances. For
ease of interpretation, we also report average reward per evaluation
instance. We refer to the resulting quantity as Balanced Normalized
Reward, or BNR. It is defined as follows:

BNR =
1
2
·
reward(easy)
# easy samples

+
1
2
·
reward(limited)
# limited samples

.

7.2.1 Relative BNR. We treat the single-layer model of Section 6.3
cross-validated on the SF Bay area as our baseline model B, and

easy medium limited

Figure 9: Output of our parking difficulty model for Down-
town Oakland, CA. Top row: a typical Monday at 8am (left)
and 9pm (right). Bottom row: the same times but on a typical
Saturday.

define relative BNR of any model M as BNR(M) − BNR(B): the
difference between BNR of the model being evaluated and the BNR
of our baseline. All the evaluation results in following sections use
relative BNR as the metric for model comparison. This measure
reports how much additional reward per (balanced) instance model
M attains compared to the baseline.

7.3 Power of individual feature families
In this section we assess the power of each of the families of features
described in Section 5. For this discussion, we use training data
from SF Bay area. We first train our baseline model B on all the
features. For each class of features F , we train a separate modelMF
on the same data using just that class of features. Table 2 shows
the relative BNR change of each model MF , compared to model
B using all the features. It should be read as follows: the first row
shows that the parking distance features alone can attain just 0.069
less BNR than the full modelM . Per this table, the parking distance,
vicinity, and deviation time features appear to be the most powerful
standalone features while monotonicity is the weakest feature.

7.4 Ablation analysis of feature families
In this section we study how much lift each feature family provides
in attaining the performance of the full model. We generate this
data as follows. In addition to model B, for each feature family F
we train on the same data a new model M(−F ) using all features
except for those in F . We then report the relative BNR change of
each modelM(−F ) compared as usual to baseline model B. Table 3
shows the results. The table should be read as follows: the first row
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Feature class Relative BNR
Parking distance -0.069

Vicinity times -0.011
Deviation times -0.079
Monotonicity -0.369

Circling -0.104
Ambient -0.115

Table 2: Relative BNR (Section 7.2.1) for models trained us-
ing only feature classes compared to training with all fea-
tures, for SF Bay area.

of the table shows that, without the parking distance features, the
model can only attain 0.018 less BNR than the full model.

Distance, vicinity, and deviation times are the most powerful
standalone features classes, but they capture redundant information
about parking search time, so there is no dramatic impact from
ablating any one class of features.

Ablated feature class Relative BNR
Parking distance -0.018

Vicinity times -0.024
Deviation times -0.014
Monotonicity -0.004

Circling -0.004
Ambient -0.003

Table 3: Relative BNR (Section 7.2.1) for models trained us-
ing all but that feature class compared to training with all
features, for SF Bay area.

7.5 DNN performance and power to generalize
We now consider the two-layer feedforward DNN model architec-
ture described in Section 6.4. We again train this model using data
from SF Bay area, and evaluate it against the same data. In addition,
we report the results of applying both the baseline single-layer
model B and the two-layer modelM against evaluation data from
four other cities worldwide. This gives us some insights regarding
how the patterns of parking difficulty in one city generalize when
applied to a different city. The results are shown in Table 4. The
table shows the relative BNR of model B and the DNN model, and
in column ∆, shows the improvement in BNR from using the DNN
model compared to the single-layer regression model.

From this table, we can observe that the single-layer and two-
layer models perform similarly in the SF Bay area. However, the
DNN generalizes better than the single-layer model to new cities.

7.6 Cross-city generalization vs. local training
In this section we again consider the performance of the two-layer
DNN model trained in the SF Bay area transferred to apply to
other cities. However we now compare the results against a locally-
trained model using data from the target city. Table 5 shows the
relative BNR of the DNNmodel trained on the SF Bay area compared
to the relative BNR of the same architecture trained on data from
the target city.

Evaluation city Relative BNR
Model B DNN ∆

SF Bay area 0.000 0.002 0.002
Los Angeles, CA -0.202 -0.105 0.097
Manchester, UK -0.242 -0.124 0.118

Pune, India -0.395 -0.298 0.097
Sao Paulo, Brazil -0.432 -0.329 0.103

Table 4: Relative BNR (Section 7.2.1) of themodel B andDNN
model M trained on SF Bay area evaluated in four other
cities.

Evaluation city Relative BNR
Trained on Trained ∆
SF Bay area locally

Los Angeles, CA -0.175 -0.105 0.070
Manchester, UK -0.197 -0.124 0.073

Pune, India -0.358 -0.298 0.060
Sao Paulo, Brazil -0.425 -0.329 0.096

Table 5: Per-city relative BNR (Section 7.2.1) of the DNN
model trained on the SF Bay area compared to the DNN
model trained on the target city’s local ground truth. Col-
umn ∆ shows the improvement that results from locally
training the model.

The results are consistent with other cities we have evaluated: a
model trained on data from a North American metro region tends to
perform reasonably well across North America, South America, and
Europe. In general, locally training a model tends to yield between
0.06 and 0.1 improvement in BNR compared to transferring the
model from SF Bay area.

8 CONCLUSIONS AND FUTUREWORK
In sum, we explored a set of feature classes that reflect parking dif-
ficulty of a given region and produced subjective parking difficulty
estimates. Experiments on Google Maps on a few regions found that
exposure to a parking difficulty badge, regardless of easy, medium,
or limited parking led to a statistically significant 4% increase in
queries for other travel modes like transit and taxi. This and over-
all model performance metrics led us to launch parking difficulty
predictions in 55 cities worldwide.

While we use features from aggregated historical examples to
predict aggregated survey results, they may come from a diverse
set of users with different individual experiences. To account for
that it would be interesting to train and predict for each survey
response and then aggregate them to produce the final outputs.

The parking situation changes based on seasons, structural and
functional changes in parking spots, events etc. It would be in-
teresting to take these into account while aggregating features
and ground truth and to produce real-time estimates reflecting the
current situation.
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